scholarly journals Produção de antissoro policlonal utilizando a proteína capsidial recombinante do Rupestris stem pitting-associated virus

2010 ◽  
Vol 40 (11) ◽  
pp. 2385-2388 ◽  
Author(s):  
Marcos Fernando Basso ◽  
Thor Vinícius Martins Fajardo ◽  
Marcelo Eiras ◽  
Ricardo Antônio Ayub ◽  
Osmar Nickel

O Rupestris stem pitting-associated virus (RSPaV) é o agente causal das caneluras do lenho da videira. Este trabalho teve como objetivo produzir antissoro policlonal a partir da proteína capsidial (CP) recombinante do RSPaV e avaliar a sua especificidade e sensibilidade. O gene da CP do RSPaV, com 780pb, foi previamente caracterizado. Esse gene foi subclonado no sítio de restrição EcoRI, no vetor de expressão pRSET-B e o plasmídeo recombinante foi utilizado para induzir a expressão da CP em Escherichia coli. A CP, ligada a uma cauda de seis histidinas, foi purificada por meio de cromatografia de afinidade em coluna de Ni-NTA a partir do extrato de proteínas totais extraídas de E. coli. A identidade da proteína purificada foi confirmada em SDS-PAGE e Western blot, utilizando-se anticorpos comerciais contra a cauda de seis histidinas. A CP recombinante expressada in vitro apresentou massa molecular de cerca de 31kDa. A proteína purificada foi quantificada e 2,55mg foram utilizados para a imunização de um coelho. O antissoro policlonal obtido reagiu com diferentes isolados deste vírus, extraídos de videiras em ELISA indireto.

2005 ◽  
Vol 54 (4) ◽  
pp. 375-379 ◽  
Author(s):  
V Yadav ◽  
R Mandhan ◽  
Rajesh Dabur ◽  
A K Chhillar ◽  
J Gupta ◽  
...  

The products of various strains of Escherichia coli (BL21, DH5α, HB101 and XL Blue) were investigated for antimycotic properties using pathogenic isolates of Aspergillus. Co-culture experiments revealed that E. coli strains exhibited variable activity against Aspergillus fumigatus. The lysates prepared from DH5α, HB101 and XL Blue strains of E. coli showed inhibitory activity against A. fumigatus in the protein concentration range of 62.50 to 250.00 μg ml−1. The highest activity was seen in the lysate of BL21, which inhibited the growth of A. fumigatus and Aspergillus flavus completely at a concentration of 31.25 μg protein ml−1. The MIC of BL21 lysate against Aspergillus niger was found to be 62.50 μg ml−1. The in vitro toxicity of BL21 lysate was evaluated using a haemolytic assay. A BL21 lysate protein concentration of 1250.00 μg ml−1 was found to be nontoxic to human erythrocytes. The standard drug amphotericin B lysed 100 % of erythrocytes at a concentration of 37.50 μg ml−1. SDS-PAGE showed the presence of at least 15 major proteins in the lysate of BL21. Ion-exchange chromatography resolved the BL21 lysate into five fractions and fraction III was found to be endowed with anti-Aspergillus properties. The MIC of this fraction was found to be 3.90 μg ml−1. Further work on the purification of the active molecule and its characterization is in progress.


2007 ◽  
Vol 32 (6) ◽  
pp. 496-500 ◽  
Author(s):  
Thor V.M. Fajardo ◽  
Danielle R. Barros ◽  
Osmar Nickel ◽  
Gilmar B. Kuhn ◽  
F. Murilo Zerbini

Grapevine leafroll-associated virus 3 (GLRaV-3), the main viral species of the grapevine leafroll complex, causes yield and quality reduction in grapes (Vitis spp.). The coat protein gene was RT-PCR-amplified from total RNA extracted from infected grapevine leaves and the amplified fragment was cloned and completely sequenced. The fragment was subsequently subcloned into the pRSET-C expression vector. The recombinant plasmid was used to transform Escherichia coli BL21:DE3 and express the capsid protein. The coat protein, fused to a 6 His-tag, was purified by affinity chromatography using an Ni-NTA resin. The identity of the purified protein was confirmed by SDS-PAGE and Western blot. The in vitro-expressed protein was quantified and used for rabbit immunizations. The antiserum was shown to be sensitive and specific for the detection of GLRaV-3 in grapevine extracts in Western blot and DAS-ELISA assays, with no unspecific or heterologous reactions against other non-serologically related viruses being observed.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Rifqiyah Nur Umami ◽  
Apon Zaenal Mustopa ◽  
Linda Sukmarini ◽  
Hasim Danuri ◽  
Andini Setyanti Putri ◽  
...  

Lactobacillus plantarum S34 dilaporkan mempunyai aktivitas antibakteri yang terkait dengan produksi bakteriosin. Bagian dari gen yang menyandikan salah satu lokus bakteriosin yang diproduksi oleh L. plantarum S34, disebut dengan plantarisin W (plnW), diamplifikasi dari plasmid dan dikloning menggunakan sistem vektor pGEM®-T Easy ke dalam Escherichia coli DH5?. Sekuens nukleotida plnW (± 405 pb) diidentifikasi sebagai protein integral membran. Lebih lanjut, plnW diekspresikan secara heterologus sebagai fusi protein dengan His(6)-tag tioredoksin menggunakan vektor ekspresi pET-32a(+) ke dalam E. coli BL21 (DE3) pLysS. Protein fusi rekombinan plnW terdapat dalam sitoplasma sel, tetapi selain fraksi terlarut terdapat juga fraksi tidak terlarut berupa badan inklusi. Purifikasi parsial dilakukan menggunakan kromatografi afinitas ligan Co2+ untuk fraksi terlarut dan metode elektroelusi gel poliakrilamid untuk fraksi tidak terlarut. Massa molekul berukuran kurang lebih 33 kDa terdeteksi berdasarkan pemisahan SDS-PAGE dan dikonfirmasi dengan Western blot sebagai protein fusi rekombinan plnW. Protein yang sudah terpurifikasi bermanfaat untuk mengetahui kaitan antara struktur dan fungsi bakteriosin.


2004 ◽  
Vol 29 (2) ◽  
pp. 215-219 ◽  
Author(s):  
Manuela R. Barbieri ◽  
Murilo G. de Carvalho ◽  
Eunize M. Zambolim ◽  
F. Murilo Zerbini

Um anti-soro policlonal específico para Watermelon mosaic virus (WMV) foi produzido por meio da imunização de coelhos com proteína capsidial purificada, expressa in vitro em células de Escherichia coli. O gene cp foi amplificado via RT-PCR utilizando oligonucleotídeos específicos, a partir de RNA viral extraído de preparações virais concentradas. O fragmento amplificado foi clonado em pBLUESCRIPT KS+ e completamente seqüenciado para confirmação de sua identidade e integridade. Em seguida, o fragmento foi subclonado no vetor de expressão pRSET-A. Plasmídeos recombinantes foram utilizados para a expressão da proteína capsidial em E. coli BL21::DE3. A proteína foi purificada por meio de cromatografia de afinidade em coluna de Ni+-NTA, a partir de proteínas totais extraídas de E. coli. Uma vez purificada, a proteína foi quantificada e utilizada para imunização dos coelhos. O anti-soro foi testado quanto a sua especificidade e sensibilidade em testes de Western blot, DAS-ELISA, imunodifusão e ELISA indireto. Todos os testes demonstraram que o anti-soro produzido a partir da expressão in vitro da proteína capsidial é altamente específico para a detecção do WMV em extratos foliares, não tendo sido observada nenhuma reação heteróloga interespecífica.


2020 ◽  
Vol 24 (19) ◽  
pp. 2272-2282
Author(s):  
Vu Ngoc Toan ◽  
Nguyen Minh Tri ◽  
Nguyen Dinh Thanh

Several 6- and 7-alkoxy-2-oxo-2H-chromene-4-carbaldehydes were prepared from corresponding alkyl ethers of 6- and 7-hydroxy-4-methyl-2-oxo-2H-chromen-2-ones by oxidation using selenium dioxide. 6- and 7-Alkoxy-4-methyl-2H-chromenes were obtained with yields of 57-85%. Corresponding 4-carbaldehyde derivatives were prepared with yields of 41-67%. Thiosemicarbazones of these aldehydes with D-galactose moiety were synthesized by reaction of these aldehydes with N-(2,3,4,6-tetra-O-acetyl-β-Dgalactopyranosyl) thiosemicarbazide with yields of 62-74%. These thiosemicarbazones were screened for their antibacterial and antifungal activities in vitro against bacteria, such as Staphylococcus aureus, Escherichia coli, and fungi, such as Aspergillus niger, Candida albicans. Several compounds exhibited strong inhibitory activity with MIC values of 0.78- 1.56 μM, including 8a (against S. aureus, E. coli, and C. albicans), 8d (against E. coli and A. niger), 9a (against S. aureus), and 9c (against S. aureus and C. albicans).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


1987 ◽  
Vol 248 (1) ◽  
pp. 43-51 ◽  
Author(s):  
J Charlier ◽  
R Sanchez

In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5′)tetraphospho(5′)adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Christopher W. Lennon ◽  
Kimberly C. Lemmer ◽  
Jessica L. Irons ◽  
Max I. Sellman ◽  
Timothy J. Donohue ◽  
...  

ABSTRACTDksA is a global regulatory protein that, together with the alarmone ppGpp, is required for the “stringent response” to nutrient starvation in the gammaproteobacteriumEscherichia coliand for more moderate shifts between growth conditions. DksA modulates the expression of hundreds of genes, directly or indirectly. Mutants lacking a DksA homolog exhibit pleiotropic phenotypes in other gammaproteobacteria as well. Here we analyzed the DksA homolog RSP2654 in the more distantly relatedRhodobacter sphaeroides, an alphaproteobacterium. RSP2654 is 42% identical and similar in length toE. coliDksA but lacks the Zn finger motif of theE. coliDksA globular domain. Deletion of the RSP2654 gene results in defects in photosynthetic growth, impaired utilization of amino acids, and an increase in fatty acid content. RSP2654 complements the growth and regulatory defects of anE. colistrain lacking thedksAgene and modulates transcriptionin vitrowithE. coliRNA polymerase (RNAP) similarly toE. coliDksA. RSP2654 reduces RNAP-promoter complex stabilityin vitrowith RNAPs fromE. coliorR. sphaeroides, alone and synergistically with ppGpp, suggesting that even though it has limited sequence identity toE. coliDksA (DksAEc), it functions in a mechanistically similar manner. We therefore designate the RSP2654 protein DksARsp. Our work suggests that DksARsphas distinct and important physiological roles in alphaproteobacteria and will be useful for understanding structure-function relationships in DksA and the mechanism of synergy between DksA and ppGpp.IMPORTANCEThe role of DksA has been analyzed primarily in the gammaproteobacteria, in which it is best understood for its role in control of the synthesis of the translation apparatus and amino acid biosynthesis. Our work suggests that DksA plays distinct and important physiological roles in alphaproteobacteria, including the control of photosynthesis inRhodobacter sphaeroides. The study of DksARsp, should be useful for understanding structure-function relationships in the protein, including those that play a role in the little-understood synergy between DksA and ppGpp.


1989 ◽  
Vol 3 (2) ◽  
pp. 105-112 ◽  
Author(s):  
T. S. Grewal ◽  
P. J. Lowry ◽  
D. Savva

ABSTRACT A large portion of the human pro-opiomelanocortin (POMC) peptide corresponding to amino acid residues 59–241 has been cloned and expressed in Escherichia coli. A 1·0 kb DNA fragment encoding this peptide was cloned into the expression vectors pUC8 and pUR291. Plasmid pJMBG51 (a pUC8 recombinant) was found to direct the expression of a 24 kDa peptide. The recombinant pUR291 (pJMBG52) was shown to produce a β-galactosidase fusion protein of 140 kDa. Western blot analysis showed that both the 24 kDa and 140 kDa peptides are recognized by antibodies raised against POMC-derived peptides. The β-galactosidase fusion protein has been partially purified from crude E. coli cell lysates using affinity chromatography on p-aminobenzyl-1-thio-β-d-galactopyranoside agarose.


2005 ◽  
Vol 71 (7) ◽  
pp. 3468-3474 ◽  
Author(s):  
Gyeong Tae Eom ◽  
Jae Kwang Song ◽  
Jung Hoon Ahn ◽  
Yeon Soo Seo ◽  
Joon Shick Rhee

ABSTRACT The ABC transporter (TliDEF) from Pseudomonas fluorescens SIK W1, which mediated the secretion of a thermostable lipase (TliA) into the extracellular space in Escherichia coli, was engineered using directed evolution (error-prone PCR) to improve its secretion efficiency. TliD mutants with increased secretion efficiency were identified by coexpressing the mutated tliD library with the wild-type tliA lipase in E. coli and by screening the library with a tributyrin-emulsified indicator plate assay and a microtiter plate-based assay. Four selected mutants from one round of error-prone PCR mutagenesis, T6, T8, T24, and T35, showed 3.2-, 2.6-, 2.9-, and 3.0-fold increases in the level of secretion of TliA lipase, respectively, but had almost the same level of expression of TliD in the membrane as the strain with the wild-type TliDEF transporter. These results indicated that the improved secretion of TliA lipase was mediated by the transporter mutations. Each mutant had a single amino acid change in the predicted cytoplasmic regions in the membrane domain of TliD, implying that the corresponding region of TliD was important for the improved and successful secretion of the target protein. We therefore concluded that the efficiency of secretion of a heterologous protein in E. coli can be enhanced by in vitro engineering of the ABC transporter.


Sign in / Sign up

Export Citation Format

Share Document