scholarly journals 15N-labeled nitrogen from green manure and ammonium sulfate utilization by the sugarcane ratoon

2011 ◽  
Vol 68 (3) ◽  
pp. 361-368 ◽  
Author(s):  
Edmilson José Ambrosano ◽  
Paulo Cesar Ocheuze Trivelin ◽  
Heitor Cantarella ◽  
Gláucia Maria Bovi Ambrosano ◽  
Eliana Aparecida Schammass ◽  
...  

Legumes as green manure are alternative sources of nitrogen (N) for crops and can supplement or even replace mineral nitrogen fertilization due to their potential for biological nitrogen fixation (BNF). The utilization of nitrogen by sugarcane (Saccharum spp.) fertilized with sunn hemp (Crotalaria juncea L.) and ammonium sulfate (AS) was evaluated using the 15N tracer technique. N was added at the rate of 196 and 70 kg ha-1 as 15Nlabeled sunn hemp green manure (SH) and as ammonium sulfate (AS), respectively. Treatments were: (i) Control; (ii) AS15N; (iii) SH15N + AS; (iv) SH15N; and (v) AS15N + SH. Sugarcane was cultivated for five years and was harvested three times. 15N recovery was evaluated in the two first harvests. In the sum of the three harvests, the highest stalk yields were obtained with a combination of green manure and inorganic N fertilizer; however, in the second cutting the yields were higher where SH was used than in plots with AS. The recovery of N by the first two consecutive harvests accounted for 19 to 21% of the N applied as leguminous green manure and 46 to 49% of the N applied as AS. The amounts of inorganic N, derived from both N sources, present in the 0-0.4 m layer of soil in the first season after N application and were below 1 kg ha-1.

2005 ◽  
Vol 62 (6) ◽  
pp. 534-542 ◽  
Author(s):  
Edmilson José Ambrosano ◽  
Paulo Cesar Ocheuze Trivelin ◽  
Heitor Cantarella ◽  
Gláucia Maria Bovi Ambrosano ◽  
Eliana Aparecida Schammass ◽  
...  

Given their potential for biological nitrogen fixation, legumes used as green manure are an alternative source of nitrogen to crops, and can supplement or even replace mineral nitrogen fertilization. The utilization of nitrogen by sugarcane (Saccharum spp.) fertilized with sunn hemp (Crotalaria juncea L.) and ammonium sulphate (AS) was evaluated using the 15N tracer technique. Amounts of 195.8 kg and 70 kg N per hectare, respectively, of sunn hemp and AS were added in the following treatments: without green manure and without AS; without green manure, with AS -15N; with green manure-15N and with AS; with green manure-15N, without AS; with green manure and with AS-15N. Four samples from the leaves +3 were collected and 2 m of the sugar cane row were harvested to estimate crop yield. The results for N contents (g kg-1), isotopic abundance of N (atoms % 15N) in leaf +3 samples, and sugarcane productivity were used to calculate cumulative N, nitrogen in the plant derived from the fertilizer-Ndff (% and kg ha-1), as well as percent recovery of fertilizer N (R%). Sugarcane was analysed and pol and total recovered sugar calculated. The highest Ndff percentages were observed eight months after sugarcane planting for treatments containing green manure without mineral N, and green manure with mineral N, at 15.3 and 18.4%, respectively. The best nitrogen recovery was observed during harvest, 18 months after planting; the treatment containing mineral fertilizer showed 34.4% recovery, while the sum between mineral N plus green manure N showed 40.0%. Treatments containing green manure plus mineral N changed soil attributes, by increasing Ca and Mg contents, sum of bases, pH, and base saturation, and decreasing potential acidity. In the plant, those treatments increased Ca and K contents.


2011 ◽  
Vol 11 (17) ◽  
pp. 9333-9342 ◽  
Author(s):  
M. Kaleem Abbasi ◽  
C. Müller

Abstract. Long-term field observations showed that N2O fluxes observed shortly after N application were not significantly affected by elevated CO2 in the Giessen Free Air Carbon dioxide Enrichment (FACE) study. To further investigate this unexpected result a 15N tracer study was carried out under controlled conditions where in parallel treatments either the NH4+ pool (15NH4NO3) or the NO3− pool (NH415NO3) was enriched with 15N. Fluxes of CO2, CH4, and N2O as well as the 15N enrichment of the N2O were measured. Denitrifying Enzyme Activity (DEA), total denitrification (N2 + N2O) and N2-to-N2O ratios were quantified in separate experiments. Over the 57 day incubation, N2O fluxes averaged 0.090 ng N2O-N g−1 h−1 under ambient and 0.083 ng N2O-N g−1 h−1 under elevated CO2 (not significantly different). The N2O production processes were identified by a two-source model. Results showed that N2O must have also been produced by a third source – possibly related to organic N transformation – which was stimulated by elevated CO2. Soil CO2 fluxes were approximately 20 % higher under elevated CO2 than soil from ambient but the differences were not significant. CH4 oxidation rates were on average −1.75 ng CH4-C g−1 h−1 in the elevated and −1.17 ng CH4-C g−1 h−1 in the ambient indicating that elevated CO2 increased the CH4 oxidation by 49 % compared to ambient CO2 under controlled conditions. N fertilization increased CH4 oxidation by 3-fold in both CO2 treatments. CO2 did not have any significant effect on DEA while total denitrification and N2-to-N2O ratios increased by 36 and 33 %, respectively. The results indicate that shortly after N application elevated CO2 must have stimulated both the N2O production and reduction to N2 to explain the increased N2-to-N2O ratio and at the same time explain the non-responsiveness of the N2O emissions. Thus, the observed variation of the CO2 effect on N2O emissions throughout the year is possibly governed by the dynamics of the N2O reductase activity.


2016 ◽  
Vol 41 (1) ◽  
pp. 163-171 ◽  
Author(s):  
MA Razzaque ◽  
MM Haque ◽  
MA Karim ◽  
ARM Solaiman

A pot culture experiment was conducted at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur during kharif II, 2012 to evaluate the nodulation, biological nitrogen fixation and yield potential of genotypes of mungbean under varying levels of N application. There were 10 mungbean genotypes viz. IPSA 12, GK 27, IPSA 3, IPSA 5, ACC12890055, GK 63, ACC12890053, BU mug 4, BARI Mung 6 and Binamoog 5, each genotype treated with six levels of N (0, 20, 40, 60, 80 and 100 kg N ha-1) . Among the genotypes, the IPSA 12 at 40 kg N ha-1 produced the maximum number of nodules (14.54 plant-1) as well as the highest nitrogen fixation (2.684 mmol C2H4). This resulted in the highest seed yield (14.22 g plant-1). The genotype ACC12890053 recorded the lowest nodulation (6 plant-1), nitrogen fixation (1.134) and seed yield (7.33 g plant-1).Bangladesh J. Agril. Res. 41(1): 163-171, March 2016


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 606
Author(s):  
Marcus Zistl-Schlingmann ◽  
Steve Kwatcho Kengdo ◽  
Ralf Kiese ◽  
Michael Dannenmann

The consequences of land use intensification and climate warming on productivity, fates of fertilizer nitrogen (N) and the overall soil N balance of montane grasslands remain poorly understood. Here, we report findings of a 15N slurry-tracing experiment on large grassland plant–soil lysimeters exposed to different management intensities (extensive vs. intensive) and climates (control; translocation: +2 °C, reduced precipitation). Surface-applied cattle slurry was enriched with both 15NH4+ and 15N-urea in order to trace its fate in the plant–soil system. Recovery of 15N tracer in plants was low (7–17%), while it was considerably higher in the soil N pool (32–42%), indicating N stabilization in soil organic nitrogen (SON). Total 15N recovery was only 49% ± 7% indicating substantial fertilizer N losses to the environment. With harvest N exports exceeding N fertilization rates, the N balance was negative for all climate and management treatments. Intensive management had an increased deficit relative to extensive management. In contrast, simulated climate change had no significant effects on the grassland N balance. These results suggest a risk of soil N mining in montane grasslands under land use intensification based on broadcast liquid slurry application.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 464 ◽  
Author(s):  
Santosh Shiwakoti ◽  
Valtcho D. Zheljazkov ◽  
Hero T. Gollany ◽  
Markus Kleber ◽  
Baoshan Xing ◽  
...  

Crop residues are an important source of plant nutrients. However, information on the various methods of residue management on micronutrients in soil and wheat (Triticum aestivum L.) over time is limited. A long-term (84-year) agroecosystem experiment was assessed to determine the impact of fertilizer type and methods of crop residue management on micronutrients over time under dryland winter wheat-fallow rotation. The treatments were: no N application with residue burning in fall (FB), spring (SB), and no residue burn (NB); 45 kg N ha−1 with SB and NB; 90 kg N ha−1 with SB and NB; pea vines; and farmyard manure (FYM) and a nearby undisturbed grass pasture (GP). Wheat grain, straw, and soil samples from 1995, 2005, and 2015 were used to determine tissue total and soil Mehlich III extractable Mn, Cu, B, Fe, and Zn, and soil pH. After 84 years, extractable Mn and B in the top 10 cm of soil decreased in all plots, except for B in FYM and SB. The FYM plots had the highest extractable Mn (114 mg kg−1) in the top 10 cm soil; however, it declined by 33% compared to the GP (171 mg kg−1). Extractable Zn in the top 10 cm of soil increased with FYM while it decreased with inorganic N application in 2015; however, total Zn in grain increased by 7% with inorganic N (90 kg ha−1) application compared to FYM application. The results suggest that residue management had similar impact on soil micronutrients. Inorganic N and FYM application can be integrated to reduce micronutrient losses from cultivation.


2015 ◽  
Vol 154 (4) ◽  
pp. 632-646 ◽  
Author(s):  
L. H. HUANG ◽  
Z. W. LIANG ◽  
D. L. SUAREZ ◽  
Z.C. WANG ◽  
M. M. WANG ◽  
...  

SUMMARYSaline-sodic soils are widely distributed in the western Songnen Plain of Northeast China and planting rice has been found to be an effective and feasible approach for improving saline-sodic soil and increasing food production. Assessment of the effectiveness and sustainability of this method requires monitoring of the changes in soil salinity and nutrient content. The objective of the current study was to investigate the changes of soil salinity and nitrogen (N) contents over 1, 3, 6 and 9 years of cultivation, four application rates of N (N0: no N, N1: 100 kg N/ha, N2: 200 kg N/ha and N3: 300 kg N/ha) and two irrigation water types: ground water irrigation (GWI) and river water irrigation (RWI). Salinity and N contents of soil and water samples were analysed before planting and after harvest throughout the experiments. Soil pH and electrical conductivity (EC), especially in the surface layer of 0–40 cm depth, decreased with years of cultivation with both GWI and RWI, while soil inorganic N and total N contents increased. Moreover, with increasing N application rates, soil inorganic N and total N contents increased significantly in the 0–20 cm soil layer. Increasing N application had little effect on soil pH and EC. Reclaiming and planting rice promoted desalination of the surface and formation of a fertile tillage layer in saline-sodic paddy fields. In terms of irrigation and drainage in saline-sodic paddy fields, both soil salinity and N contents increased. Soil total salinity increased annually by 34 and 12·8 kg/ha, and inorganic N contents increased annually by 9 and 13·5 kg/ha with GWI and RWI, respectively. Therefore, comprehensive agricultural practices should be adopted for improving and cropping rice in saline-sodic paddy fields.


1990 ◽  
Vol 70 (3) ◽  
pp. 313-323 ◽  
Author(s):  
H. H. JANZEN ◽  
J. B. BOLE ◽  
V. O. BIEDERBECK ◽  
A. E. SLINKARD

There is growing interest in the use of annual legumes as green manure crops to replace conventional summerfallow in the spring wheat production systems of western Canada. A series of field experiments was established at three sites in western Canada (Lethbridge, Swift Current, and Saskatoon) in each of two seasons to quantify the N contribution of green manure to subsequent crops and organic matter reserves. 15N-labelled plant material from two annual legume species [Tangier flatpea (Lathyrus tingitanus 'Tinga') and lentil (Lens culinaris 'Indianhead')], as well as 15N-labelled ammonium sulfate, was applied to field microplots in midsummer. The following spring, an additional ammonium sulfate treatment was established and all plots were seeded to spring wheat (Triticum aestivum 'Leader' or 'Katepwa'). On average, the wheat crop recovered 14% of the green manure N compared with 36% of the fertilizer N. Conversely, the relative contribution of the green manure to the organic N pool in the surface soil layer was approximately twice that of inorganic fertilizer. This residual organic N was relatively recalcitrant to further mineralization, as was evident from minimal uptake of applied N in the second year after application. These results suggest that annual legumes can be a significant source of N to subsequent crops in the rotation, provided that N yields are sufficient. The primary advantage of green manure production, however, may be the long-term replenishment of stable organic N reserves in the soil. Key words: N mineralization, organic matter, 15N, annual legumes, green manure, lentil, pea


2013 ◽  
Vol 67 (10) ◽  
pp. 2330-2336 ◽  
Author(s):  
Takao Yamagishi ◽  
Mio Takeuchi ◽  
Yuichiro Wakiya ◽  
Miyoko Waki

Anaerobic ammonium oxidation (anammox) is a novel biological nitrogen removal process that oxidizes NH4+ to N2 with NO2− as an electron acceptor. The purpose of this study was to examine the potential activity and characteristics of anammox in a conventional swine wastewater treatment facility, which uses an activated sludge system consisting of three cascade aeration tanks equipped with ceramic support material. Anammox activity was estimated by a 15N tracer assay method and was detected in all the sludge and biofilm samples in each aeration tank. Biofilm taken from the third aeration tank, in which the dissolved oxygen concentration was 7.5 mg/L and the wastewater included a high concentration of NO3−, showed by far the highest anammox activity. A clone library analysis showed the existence of anammox bacteria closely related to ‘Candidatus Jettenia asiatica’ and ‘Ca. Brocadia caroliniensis’. The optimum conditions for anammox activity were a pH of 6.7–7.2, a temperature of 35 °C, a NO2− concentration of 10 mmol/L or less, and an NH4+ concentration of 32 mmol/L or less.


2019 ◽  
Vol 11 (9) ◽  
pp. 73
Author(s):  
João Nacir Colombo ◽  
Mário Puiatti ◽  
Marcelo Rodrigo Krause ◽  
Marília Cecília Bittencourt ◽  
Janiele Cássia Barbosa Vieira ◽  
...  

Although several studies about intercropping green manures with vegetable crops have already been carried out, there are few studies in which the economic analysis was performed. The aim of the present study was to evaluate the economic profitability of the taro and Crotalaria juncea consortium, as well as broccoli, green maize and snow pea grown in succession. The treatments correspond to 10 different cutting dates of the sunn hemp during its intercropping with taro (55, 70, 85, 100, 115, 130, 145, 160, 190 and 220 DAS-days after sowing), plus the monoculture of the taro. Under the legumious cover crop straw were grown in succession: broccoli, green maize and snow pea. The use of Crotalaria juncea in a consortium does not affect the productivity and economic profitability of the taro when cutting up to 130 DAS. The residual effect of Crotalaria juncea grown in consortium with taro increases the economic yield of broccoli when the cutting is performed from 145 DAS. However, it does not affect green maize and snow pea. When the taro is cultivated intercropped with Crotalaria juncea and in succession broccoli, green maize and snow pea are grown, higher yields and economic incomes are obtained by cutting the leguminous green manure up to 130 DAS.


2014 ◽  
Vol 7 ◽  
pp. ASWR.S13861 ◽  
Author(s):  
Corey G. Lacey ◽  
Shalamar D. Armstrong

Little is known about the timing and quantity of nitrogen (N) mineralization from cover crop residue following cover crop termination. Therefore, the objective of this study was to examine the impact of cover crop species on the return of fall applied N to the soil in the spring following chemical and winter terminations. Fall N was applied (200 kg N ha−1) into a living stand of cereal rye, tillage radish, and control (no cover crop). After chemical termination in the spring, soil samples were collected weekly and were analyzed for inorganic N (NO3-N and NH4-N) to investigate mineralization over time. Cereal rye soil inorganic N concentrations were similar to that of the control in both the spring of 2012 and 2013. Fall N application into tillage radish, cereal rye, and control plots resulted in an average 91, 57, and 66% of the fall N application rate as inorganic N in the spring at the 0-20 cm depth, respectively. The inclusion of cover crops into conventional cropping systems stabilized N at the soil surface and has the potential to improve the efficiency of fall applied N.


Sign in / Sign up

Export Citation Format

Share Document