scholarly journals Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars

2007 ◽  
Vol 19 (2) ◽  
pp. 127-139 ◽  
Author(s):  
Vivian C. da Silveira ◽  
Anna P. de Oliveira ◽  
Raul A. Sperotto ◽  
Luciana S. Espindola ◽  
Lívio Amaral ◽  
...  

Iron is an essential nutrient for plants. In aerobic conditions, Fe is highly unavailable for plant uptake, and Fe deficiency can be severe in plants grown in calcareous soils. In waterlogged soils, however, Fe availability increases and can reach toxic concentrations. Rice is an important staple crop worldwide and faces iron deficiency or excess, depending on the growth conditions. To contribute to the study of mechanisms involved in response to Fe deficiency and resistance to Fe excess, experiments were carried out with rice cultivars BR-IRGA 409 (I409, susceptible to Fe toxicity) and EPAGRI 108 (E108, resistant to Fe toxicity) grown in culture solutions and submitted to Fe excess, control concentration or deficiency (500, 6.5 or zero mg L-1 Fe, respectively). Analysis of shoot dry weight confirmed the resistance of E108 plants to Fe excess. Mössbauer spectroscopy analysis indicated the presence of four different Fe3+compounds. The parameters obtained match those expected for ferrihydrite, lepidocrocite (and/or citrate) and Fe-nicotianamine. Mineral concentrations were determined using the PIXE (Particle Induced X-Ray Emission) technique. E108 plants had lower Fe concentrations than I409 plants when exposed to excess Fe. Except for lower Mn levels in roots and shoots, the excess of Fe did not result in lower nutrient concentrations in the susceptible cultivar compared to the resistant one. I409 plants seem to be affected directly by Fe toxicity rather than by secondary effects on mineral nutrition, whereas E108 plants seem to make use of the avoidance mechanism in the resistance to Fe overload. Both cultivars responded to Fe deficiency with allocation of P from roots to shoots. In addition to being more resistant to iron overload, E108 plants seem to be more efficient in inducing Fe deficiency responses.

1999 ◽  
Vol 50 (6) ◽  
pp. 1027 ◽  
Author(s):  
J. D. Brand ◽  
C. Tang ◽  
A. J. Rathjen

Current varieties of narrow-leafed lupin (Lupin angustifolius L.) are poorly adapted to alkaline and calcareous soils found commonly throughout the south-estern Australian cropping zone. Apot experiment compared the growth of Lupinus angustifolius cv. Gungurru with L. pilosus P20954 in a range of soils collected throughout South Australia. The soils displayed a range of texture (clay, 3–82%), pH (1:5 soil:H2O, 7·0–9·6), and calcium carbonate content (CaCO3, 0–47%). Potting mix (pH 5·8) was used as the control. The plants were grown for 7 weeks with weekly measurements of chlorosis score and leaf number. At harvest, dry weights were recorded and the youngest fully expanded leaves were analysed for nutrient concentrations. The line P20954 grew much better in all the soils than Gungurru in terms of plant dry weight relative to the control soil, this being particularly evident in the calcareous soils. Chlorosis score correlated highly with shoot dry weight for Gungurru, but not for P20954. The main soil factor contributing to the chlorosis score of Gungurru was CaCO3 content, whereas none of the soil factors significantly affected P20954, although in Weeks 2 and 3 chlorosis score correlated with CaCO3 content. The dry weight of Gungurru was affected by a combination of factors including clay content, pH, and CaCO3 content, whereas the dry weight of P20954 was affected by most of the soil factors measured. The dry weight of P20954 was positively correlated with aluminium and magnesium concentrations. Concentrations of all nutrients were above critical levels for both genotypes grown in all soils. The results indicate that L. pilosus has the potential to be grown in areas where current varieties of L. angustifolius are poorly adapted.


2018 ◽  
Vol 46 (2) ◽  
pp. 153 ◽  
Author(s):  
Sugiyanta , ◽  
I Made Dharmika ◽  
Dan Dedeh Siti Mulyani

ABSTRACT<br />    <br />As one of the silica (Si) accumulator, rice (Oryza sativa L.) requires large amounts of silica for growth. This study aimed to determine the effect of liquid silica fertilizer application on lowland rice growth and yield, and its roles in drought stress responses. The experiments were conducted at Sawah Baru rice field and Cikabayan Greenhouse Experiment Station, IPB, Bogor during the period of January to May 2016. The field experiment was set up in a randomized complete block design with 7 treatments and three replications. The greenhouses experiment was arranged in a split-plot randomized block design with 3 replications. The main plots were 5 levels of liquid silica fertilizer application, while the subplot was 5 level of various soil water contents. The results of the field experiment showed that the application of liquid silica fertilizer increased rice shoot dry weight, total and productive tiller numbers, and yield per plant, but did not increase yield per hectare. Meanwhile at greenhouse experiment, it showed that the use of liquid silica fertilizer reduced the number of rice stomata, but did not increase cuticle thickness and grain yield per plant. Silica application was not effective to alter drought in rice.<br /><br />Keywords: IPB 3S, silica fertilizer, soil water content, water use efficiency   <br /><br />


2021 ◽  
Vol 6 (1) ◽  
pp. 38
Author(s):  
Riza Afrinda ◽  
Budiastuti Kurniasih

Marginal land along the coast should be utilized to increase the national rice production. In addition, the use of saline resistant varieties, it is necessary to determine the best seedling age for saline soil. This study aimed to evaluate the growth and yield responses of two rice varieties transplanted at different seedling age on saline soil. The experiment was arranged in a factorial Randomized Completely Block Design (RCBD) with three replications, conducted at saline coastal area of Baros, Yogyakarta, starting from January to June 2017. The first factor was rice varieties, consisting of Dendang and IR-64. Meanwhile, the second factor was the seedling age, consisting of 2 and 4 weeks after sowing (WAS) seedlings. The results showed that the growth and yield of two rice varieties (Dendang and IR-64) showed significant difference, and Dendang showed a better performance than IR-64. The higher yield of Dendang compared to IR-64 was supported by higher plant growth (shoot dry weight) and yield components (number of seeds per panicle, seed weight per plot, and productivity). The 2 and 4 WAS seedlings did not give significantly different effects on nearly all growth variables. However, 2 WAS Dendang rice seedlings had higher shoot dry weight. Meanwhile, IR-64 had higher leaf greenness in 4 WAS seedlings compared to that in 2 WAS seedlings.


2021 ◽  
Vol 49 (1) ◽  
pp. 12158
Author(s):  
Adnan RASHEED ◽  
Ghulam M. WASSAN ◽  
Hira KHANZADA ◽  
Abdul M. SOLANGI ◽  
Muhammad AAMER ◽  
...  

Fe is a trace element considered to be essential for rice, and it drives several metabolic processes. Fe toxicity occurs due to excessive Fe ions (Fe2+) and which, disturb cellular homeostasis and dramatically reduces the rice yield. A set of 118 BRILs made from a cross of japonica cv.’02428’ and indica ‘Changhui 891’ was used with high density bin map constructed by using high quality SNP to identify the QTL for Fe toxicity tolerance. As a whole total of 23 QTL were identified for various seedling traits, 3 under control with phenotypic difference ranging from 14.21% to 62.46%, 11 QTL under stress with phenotypic difference ranging from 7.89% to 47.39% and 9 under stressed/control ratio with phenotypic variance ranging from 9.17% to 183.50%. LOD values of QTL ranging from 4.05 to 17.04 in control, 3.41 to 8.09 in stress and 2.84 to131.63 in stress/control ratio. Shoot length (SL), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), shoot dry weight (SDW), and root dry weight (RDW), were used to estimate the degree of Fe tolerance. Many stable QTL, qSSDW-4, qSSDW-6, qRSDW-4 and qRSDW-6 affecting SDW were detected and beside this some new QTL, qRSFW-1, qRRFW-10 and qRRDW-1 were successfully identified significantly contributing to Fe toxicity tolerance in rice. The results of current study indicated that these novel regions could be transferred via markers assisted section and QTL pyramiding to develop Fe resistant lines in rice.


HortScience ◽  
2006 ◽  
Vol 41 (6) ◽  
pp. 1498-1501 ◽  
Author(s):  
Brandon R. Smith ◽  
Lailiang Cheng

`Concord' grapevines (Vitis labruscana Bailey) can readily develop iron deficiency-induced leaf chlorosis when grown on calcareous or high pH soils. Iron (Fe) chelates are often applied to the soil to remedy chlorosis but can vary in their stability and effectiveness at high pH. We transplanted own-rooted 1-year-old `Concord' grapevines into a peat-based medium adjusted to pH 7.5 and fertigated them with 0, 0.5, 1.0, 2.0, or 4mg·L–1 Fe from Fe-EDDHA [ferric ethylenediamine di (o-hydroxyphenylacetic) acid] to determine the effectiveness of this Fe chelate for alleviating Fe deficiency-induced chlorosis at high pH. Vines were sampled midseason for iron, chlorophyll, CO2 assimilation, and photosystem II quantum efficiency (PSII) and at the end of the season for leaf area, dry weight, and cane length. We found that leaf total Fe concentration was similar across all treatments, but active Fe (extracted with 0.1 n HCl) concentration increased as the rate of Fe-EDDHA increased. Chlorophyll concentration increased curvilinearly as applied Fe increased and was highly correlated with active Fe concentration. CO2 assimilation, stomatal conductance, and PSII were very low without any supplemental Fe and increased rapidly in response to Fe application. Total leaf area, foliar dry weight, and cane length all increased as Fe application increased to 1 mg·L–1 Fe, but above this rate, a further increase in Fe did not significantly increase growth. Our results demonstrate that Fe-EDDHA is very effective in alleviating Fe deficiency-induced leaf chlorosis in `Concord' grapevines grown at high pH, which provides a foundation for continuing research related to the optimum rate and timing of application of Fe-EDDHA in `Concord' vineyards on calcareous soils. Compared with total Fe, leaf “active Fe” better indicates the actual Fe status of `Concord' vines.


HortScience ◽  
2011 ◽  
Vol 46 (5) ◽  
pp. 799-807 ◽  
Author(s):  
Gladis M. Zinati ◽  
John Dighton ◽  
Arend-Jan Both

We tested the effects of using an inoculum containing natural ericoid roots and soil (NERS) with two fertilizer and irrigation rates on plant growth, shoot (stems and leaves) nutrient concentration, leachate quality, and mycorrhizal colonization of container-grown Coast Leucothoe [Leucothoe axillaris (Lam.) D. Don] and Japanese Pieris [Pieris japonica (Thunb.) D. Don ex G. Don]. Uniform rooted liners were grown in 10.8-L containers in a pine bark, peatmoss, and sand (8:1:1 by volume) substrate medium in a randomized complete block design with four replications. A controlled-release fertilizer, Polyon® Plus 14-16-8 (14N–7P–6.6K), was incorporated in the substrate medium at the 100% manufacturer's recommended fertilizer rate [representing high fertilizer rate (HF)] (56 g per container) to supply 7.84 g nitrogen (N) and at 50% the manufacturer's recommended rate [representing low fertilizer rate (LF)]. Plants were irrigated using a cyclic drip irrigation system at high (HI) and low (LI) irrigation rates calibrated to supply 25.2 L of water and 16.8 L per week, respectively. On average, NERS inoculation increased shoot growth of Leucothoe and Pieris by 56% and 60%, respectively. Shoots of Leucothoe inoculated with NERS had higher N, phosphorus (P), magnesium (Mg), and manganese (Mn) concentrations than non-inoculated plants. At LF, nitrous-N (NOx-N) and orthophosphorus (PO4-P) concentrations in the leachate were reduced by 53% from Leucothoe and 62% from Pieris compared with HF-treated plants. A reduction of 37% and 36% in PO4-P concentration in leachates from Leucothoe and Pieris, respectively, were achieved at the reduced irrigation (LI) rate. The NERS inoculation reduced PO4-P concentrations in leachate from Leucothoe by 26% and NOx-N concentration by 33% in leachates from Pieris compared with non-inoculated plants. Compared with plants grown in the HI–HF treatment, the combination of LI–LF treatment reduced NOx-N concentrations in leachates from Leucothoe by 60% (P = 0.016) and reduced PO4-P leachate concentrations from Pieris by 72% (P = 0.0096). Decreasing the fertilizer rate to 50% of the recommended rate and the irrigation rate to 67% of the recommended rate in conjunction with the incorporation of NERS reduced leachate nutrient concentrations of two main water pollutants (NOx-N and PO4-P). Adopting the practice of adding NERS containing fungi and bacteria can be an effective system to increase shoot dry weight, allow reduction in fertilizer application, conserve water for irrigation, and minimize subsequent nutrient runoff in nursery operations.


HortScience ◽  
2015 ◽  
Vol 50 (4) ◽  
pp. 603-608 ◽  
Author(s):  
James E. Altland ◽  
James C. Locke ◽  
Wendy L. Zellner ◽  
Jennifer K. Boldt

Dolomitic lime (DL) is the primary liming agent used for increasing pH in peatmoss-based substrates. Steel slag (SS) is a byproduct of the steel manufacturing industry that has been used to elevate field soil pH. The objective of this research was to determine the pH response of a peatmoss-based greenhouse substrate to varying rates of DL or SS. Two experiments were conducted with an 85 peatmoss : 15 perlite substrate. In the first experiment, the substrate was amended with 0, 2.4, 4.8, or 7.1 kg·m−3 of either DL or SS. Half of the containers remained fallow and the other half were potted with a single sunflower (Helianthus annuus L. ‘Pacino Gold’). In the second experiment, fallow containers were only used with the substrate amended with 0, 2.4, 4.8, 9.5, or 14.2 kg·m−3 DL or SS. Sunflower were measured for relative foliar chlorophyll content, shoot mass, root ratings, and foliar nutrient concentrations. Substrate electrical conductivity (EC) and pH were measured weekly using the pour-through procedure. All sunflower plants grew vigorously, although nonamended controls had less shoot dry weight than those amended with DL or SS. There were minor differences in foliar concentration of N, Ca, Mg, and Mn; however, these differences did not adversely affect plant growth. Summarizing across both experiments, EC was affected by treatment and time, although all substrates had EC readings within the range recommended for floriculture crop production (1.0–4.6 mS⋅cm−1). Substrate pH differed slightly in Expt. 1 between fallow and planted containers. Substrate pH increased exponentially with increasing rates of either DL or SS. Maximum pH in fallow DL and SS amended substrates was 6.57 and 6.93, respectively, in Expt. 1 and 6.85 and 7.67, respectively, in Expt. 2. The SS used in this experiment resulted in a greater pH response than DL with higher application rates. SS is a viable material for raising pH of soilless substrates.


Euphytica ◽  
2020 ◽  
Vol 216 (10) ◽  
Author(s):  
Nana Kofi Abaka Amoah ◽  
Richard Akromah ◽  
Alex Wireko Kena ◽  
Baboucarr Manneh ◽  
Ibnou Dieng ◽  
...  

Abstract Salt stress is a menace to rice production and a threat to food security worldwide. We evaluated 308 F4 families from Sahel 317/Madina Koyo for tolerance to salt stress at the early seedling stage. To better understand genomic regions controlling tolerance in the population, we genotyped the progenies and the two parents using single nucleotide polymorphism (SNP) markers and regressed the genotypic data on their phenotype to detect QTLs. An average reduction of 63.4% was observed for all fitness-related traits among the F4 families. A total of 46 progenies recorded an average salt injury score (SIS) between 1–3 and were rated as tolerant to salt stress at the early seedling stage. A high-density genetic map was constructed for the 12 rice chromosomes using 3698 SNP markers. Multiple interval mapping identified 13 QTLs for SIS, shoot length, shoot dry weight and root length on chromosomes 2, 3, 4, 6, 7, 10 and 12, with trait increasing alleles coming from both parents. Two (qSDW2 and qRL2.2) and three (qSL2, qRL2.1 and qSIS2) QTLs at different regions on chromosome 2 and another two on chromosome 7 (qSDW7 and qSL7) were tightly linked. These QTLs could facilitate breeding for salt tolerance at the early seedling stage as direct selection for one, would mean indirectly selecting for the other. Fine mapping of these novel QTLs in a different genetic background is necessary to confirm their stability and usefulness in breeding for tolerance to salinity in rice.


Author(s):  
Amer Abdulhadi Jawad ◽  
Ali Coşkan

The aim of this study was to find potential PGPR from sub-forest soil located different region soils of Turkey. Previous research indicated that the existing bacteria in arable soil are not capable to represent their individual performance most probably due to the competition. To overcome this phenomenon, soils are collected from sub-forest soil of Adana (Ad), Antalya (An), Hatay (Ha), Isparta (Is), Ordu (Or) and Sivas (Si) provinces. Experiment was carried out on the soil existing in Isparta in a greenhouse condition. Four fast growing bacteria colonies in tryptic soy (CASO) agar medium from each province were isolated and then, each isolate cultivated at liquid CASO broth until they reach 106 cfu ml-1. Experiments were carried out with a total of 24 bacteria including 6 province and 4 bacteria cultures from each region. The effects of those bacteria on biomass development and nutrient uptake of maize (Zea mays) were investigated. Sterile broth was applied treatment defined as control. The results revealed that 23 isolates out of 24 stimulated plants shoot dry weight. The highest value observed in the Or1 and Is4 isolates as 12.8 and 12.7 g plant-1 which around 77% higher than control whereas the lowest was in Or2 as 6.45 g plant-1. Plant nutrient concentrations were also influenced from inoculates where An1, Ad1, Or1, Is1 and Is3 significantly increased macro nutrients uptake where total N, available P, K, Ca and Mg were higher by 19%, 14%, 14%, 59% and 41% over the control, respectively. The Fe concentration was found 48% higher in Ad3 isolate. The Cu, Mn and Zn were the highest in Si3 as 43%, 30% and 31%, respectively. In general 4 out of 24 isolates were selected as promising PGPR for both plant development and nutrient uptake of maize.


2019 ◽  
Vol 6 (01) ◽  
pp. 17-23
Author(s):  
Dede Yudo Kurniawan ◽  
Ahmad Junaedi ◽  
Iskandar Lubis ◽  
Titi Candra Sunarti

Temperature is a primary factor that affects the rate of plant development and has great impacts on plant growth, metabolism, and yield. A study was conducted to analyze the effects of elevated temperature on rice morphological and the physiological growth. The research was arranged in a nested randomized block design consisting of two factors, temperatures and rice varieties. Elevated temperatures were provided through the uses of different materials of plastic roof and walls to have an average and maximum temperature of 27.6 °C and 41.6 °C (T1); 28.1°C and 43.8 °C (T2), and 29.5°C and 47.1 C (T3), respectively. The study used three varieties of rice, “Ciasem”, “Ciherang”, and “IR64”. All rice varieties showed signifi cant increases in tiller number per hill and shoot dry weight, but had a decrease in the stomatal conductance, transpiration rate, and SPAD values at grain fi lling stage with the increasing temperatures. The number of tiller per hill increased when temperature was elevated from 27.6 to 28.1 and 29.5°C by about 29.9 and 21.3%, respectively.


Sign in / Sign up

Export Citation Format

Share Document