scholarly journals Leaf and fruiting phenology and gas exchange of Mangabeira in response to irrigation

2008 ◽  
Vol 20 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Francisco de A. Lobo ◽  
José H. Campelo Junior ◽  
Carmen E. Rodríguez-Ortíz ◽  
Isabela C. de Lucena ◽  
George L. Vourlitis

The mangabeira (Hancornia speciosa Gómez) is a native species of Brazil occurring in the savanna (Cerrado) and Atlantic Coastal forests. It is a promising species for large-scale horticulture due to the high-protein properties of its fruits, but extensive cultivation has not yet been accomplished. Research is still needed to determine cultivation techniques that will optimize productivity. As irrigation is considered to be the most important agronomic technique to enhance productivity, the goal of this investigation was to evaluate the effects of irrigation on leaf gas exchange (net photosynthesis rate and transpiration rate) and foliar and fruiting phenology. Our results suggest that irrigation acts by increasing the growth and fruit production of mangabeira due to its effects on phenology. Gas exchange of adult plants was only marginally affected by irrigation; however, irrigated plants retained leaves longer than non-irrigated plants during the dry season, which increased the C gain over an annual period. The increase in C gain presumably led to irrigated plants having a higher relative frequency of fruited plants than the non-irrigated. A significant positive correlation between net photosynthesis rate per unit dry mass and specific leaf area was found for irrigated plants, which suggests that irrigation can promote the development of new leaf cells with no direct contribution to photosynthesis.

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 608
Author(s):  
Fairuz Fatini Mohd Yusof ◽  
Jamilah Syafawati Yaacob ◽  
Normaniza Osman ◽  
Mohd Hafiz Ibrahim ◽  
Wan Abd Al Qadr Imad Wan-Mohtar ◽  
...  

The growing demand for high value aromatic herb Polygonum minus-based products have increased in recent years, for its antioxidant, anticancer, antimicrobial, and anti-inflammatory potentials. Although few reports have indicated the chemical profiles and antioxidative effects of Polygonum minus, no study has been conducted to assess the benefits of micro-environmental manipulation (different shading levels) on the growth, leaf gas exchange and secondary metabolites in Polygonum minus. Therefore, two shading levels (50%:T2 and 70%:T3) and one absolute control (0%:T1) were studied under eight weeks and 16 weeks of exposures on Polygonum minus after two weeks. It was found that P. minus under T2 obtained the highest photosynthesis rate (14.892 µmol CO2 m−2 s−1), followed by T3 = T1. The increase in photosynthesis rate was contributed by the enhancement of the leaf pigments content (chlorophyll a and chlorophyll b). This was shown by the positive significant correlations observed between photosynthesis rate with chlorophyll a (r2 = 0.536; p ≤ 0.05) and chlorophyll b (r2 = 0.540; p ≤ 0.05). As the shading levels and time interval increased, the production of total anthocyanin content (TAC) and antioxidant properties of Ferric Reducing Antioxidant Power (FRAP) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) also increased. The total phenolic content (TPC) and total flavonoid content (TFC) were also significantly enhanced under T2 and T3. The current study suggested that P.minus induce the production of more leaf pigments and secondary metabolites as their special adaptation mechanism under low light condition. Although the biomass was affected under low light, the purpose of conducting the study to boost the bioactive properties in Polygonum minus has been fulfilled by 50% shading under 16 weeks’ exposure.


Author(s):  
Lourenço M. C. Branco ◽  
Claudivan F. de Lacerda ◽  
Albanise B. Marinho ◽  
Carlos H. C. de Sousa ◽  
Amanda S. F. Calvet ◽  
...  

ABSTRACT The objective of this study was to evaluate the influence of irrigation with brackish water on the production of bamboo seedlings (Bambusa vulgaris). The experiment was carried out at the Fazenda Experimental Piroás, in the municipality of Redenção, CE, Brazil (4° 14’ 53” S, 38° 45’ 10” W, and altitude of 230 m), in a completely randomized design with five treatments and six repetitions. The treatments consisted of five irrigation water electrical conductivity (ECw): 0.5 (control); 1.5; 2.5; 3.5 and 4.5 dS m-1. At 120 days after the beginning of the application of the treatments the leaf gas exchange, relative chlorophyll index (RCI), plant height (H), shoot dry matter (SDM), H/SDM ratio, and the concentrations of Na+ and K+ in stems and leaves were evaluated. Salt tolerance indexes were calculated based on SDM, H, photosynthesis rate and RCI. The increase in the ECw reduced leaf gas exchange, and the reduction in the photosynthesis rate was caused by stomatal and non-stomatal effects. The salinity affected negatively the growth and quality of bamboo seedlings, with the greatest effects being with ECw equal to or greater than 2.5 dS m-1. Bamboo seedlings present Na+ retention in the stems and low Na+/K+ ratio in the leaves. Bamboo seedlings are tolerant to salinity up to 1.5 dS m-1, indicating that waters with this salinity can be used for seedling production of this species, without loss of growth and quality.


2006 ◽  
Vol 86 (Special Issue) ◽  
pp. 1377-1381 ◽  
Author(s):  
J. P. Privé ◽  
L. Russell ◽  
A. LeBlanc

A field trial was conducted over two growing seasons in a Ginger Gold apple orchard in Bouctouche, New Brunswick, Canada to examine the impact of Surround (95% kaolin clay) on leaf gas exchange [net photosynthesis (Pn), stomatal conductance (gs), intercellular CO2 (Ci) and transpiration (E)]. In 2004, a greater rate of Pn and gs was achieved at the higher than at the lower frequency of Surround applications. This was particularly notable at leaf temperatures exceeding 35°C. In 2005, no significant (P ≤ 0.05) differences among leaf residue groupings [Trace (< 0.5 g m-2), Low (0.5 to 2 g m-2), and High (≥ 2 g m-2)] were found for the four leaf gas exchange parameters at leaf temperatures ranging from 25 to 40°C. It would appear that under New Brunswick commercial orchard conditions, the application of Surround favours or has no effect on leaf gas exchange. Key words: Surround, particle film, leaf physiology, photosynthesis, stomatal conductance, intercellular CO2, transpiration


2015 ◽  
Vol 52 (2) ◽  
pp. 251-265 ◽  
Author(s):  
R. E. JAIMEZ ◽  
F. RADA

SUMMARYA common practice in some South American countries consists in moving around Capsicum chinense cultivars between regions where edaphoclimatic conditions differ notably. The purpose of this research was to compare and relate gas exchange responses with assimilate allocation patterns and flower and fruit production dynamics in a cultivar of C. chinense in three locations with different mean temperatures (19, 24 and 28 °C) along a gradient from 140–1855 m. Leaf gas exchange (leaf conductance, CO2 assimilation and transpiration rates) was measured at 60–70, 110–120 and 140–150 days after transplanting (dat) from seed beds. Dry weight per plant of leaves, stems and roots were determined at 50, 73, 96, 114 and 196 dat. Flowering dynamics and fruit production were followed weekly. A marked reduction (50%) in mean Gs was found at the site with the lowest mean temperature in relation to plants grown at the highest temperature site. Mean daily CO2 assimilation rate was higher for plants in the intermediate site and a reduction of 18 and 42% was found for sites with highest and lowest mean temperature, respectively. We report an adverse effect of low temperatures on growth of C. chinense. Flowering initiation and fruit production was delayed at lower temperatures. An increase in temperature (between 26–30 °C) led to an increase in the number of flowers; below this temperature it remained unchanged. Fruit production is drastically reduced at the lower temperature site due to a large number of aborted flowers and small fruits.


2003 ◽  
Vol 33 (6) ◽  
pp. 1076-1083 ◽  
Author(s):  
Gregory T Munger ◽  
Rodney E Will ◽  
Bruce E Borders

To determine the importance of competition control and annual fertilization on leaf gas exchange, light-saturated net photosynthesis (Asat), stomatal conductance (gs), and internal CO2 concentration (Ci) were measured multiple times in different-aged loblolly pine (Pinus taeda L.) stands growing at a Piedmont (BF Grant) and Coastal Plain (Waycross) location in Georgia, U.S.A. At both locations, competition control decreased Asat and gs (Asat from 4.53 to 4.12 µmol·m–2·s–1, gs from 0.058 to 0.050 mol·m–2·s–1 at BF Grant; Asat from 4.22 to 4.01 µmol·m–2·s–1, gs from 0.054 to 0.049 mol·m–2·s–1 at Waycross). Overall, fertilization did not have a positive impact on Asat, even though fertilization significantly increased foliar nitrogen concentration. At BF Grant, fertilization significantly decreased gs from 0.057 to 0.051 mol·m–2·s–1 and Ci from 217 to 205 µmol·mol–1. In addition, the decrease in Ci associated with fertilization became larger with stand age. At Waycross, fertilization decreased Ci from 211 to 203 µmol·mol–1 and the interaction between fertilization and stand age was significant for gs and Ci. These results indicate that silivcultural practices that increase resource availability and stand growth did not enhance leaf gas exchange.


2020 ◽  
Vol 9 (9) ◽  
pp. e588997606
Author(s):  
Elisson Alves Santana ◽  
Francisco Eduardo dos Santos Gomes ◽  
Jackson Teixeira Lobo ◽  
Alberto de Andrade Soares Filho ◽  
Ítalo Herbert Lucena Cavalcante ◽  
...  

The objective of this work was to evaluate the influence of fertirrigation with nitrogen and liquid bovine biofertilizer on gas exchange and leaf chlorophyll index of 'paluma' guava (Psidium guajava L.). The experimental design was randomized blocks with treatments distributed in a factorial arrangement (2 × 4) referring to mineral fertilizing with N (50% and 100% of N recommended) and biofertilizer concentrations (0, 2.5, 5.0 and 7.5% of the fertirrigated volume). Variables evaluated were chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll indexes (Chltotal), internal CO2 concentration (Ci), stomatal conductance (gs), transpiration (E), net photosynthesis (A), instant carboxylation efficiency (iCE) and water use efficiency (WUE). The biofertilizer significantly affected Chl a, Chl b, Chltotal, A, gs and E, with quadratic polynomial adjustment of the results. However, there was no effect of N fertilization and interaction between the factors. Maximum index of Chltotal was 32.31 obtained with the estimated dose of 3.8% of the biofertilizer; while A, gs and E presented maximum responses of 19.09 µmol of CO2 m-2 s-1, 0.28 mol of H2O m-2 s-1 and 4.93 mmol of H2O m-2 s-1, with estimated doses of 3.6%, 3.6%, and 3.7%, respectively. Generally, liquid bovine biofertilizer applied via fertirrigation affects positively the photosynthetic responses in 'paluma' guava, however, with decreasing effects for doses above 3.8%.


Botany ◽  
2021 ◽  
Vol 99 (1) ◽  
pp. 23-32
Author(s):  
Gabriele Marques Leme ◽  
Flavio Nunes Ramos ◽  
Fabricio José Pereira ◽  
Marcelo Polo

We investigated morpho-physiological plasticity in the leaves of Ocotea odorifera trees growing under different environmental conditions in a fragmented forest. Microclimatic data were collected in a pasture matrix, forest edge, and forest interior in three Atlantic Forest fragments. Leaf gas exchange, as well as leaf anatomy in paradermal and transversal sections, were evaluated in individuals in these environments. Radiation intensity and temperature had higher effects in the pasture matrix compared with the forest interior and forest edge. However, internal portions of the canopy did not exhibit significant variation in radiation or temperature. External canopy leaves exhibited higher net photosynthesis in plants from the pasture matrix, but there was higher net photosynthesis for internal leaves from the shaded forest interior. Variation in net photosynthesis and other gas-exchange parameters were related to thinner shade leaves in forest interior individuals, and internal leaves with lower stomatal density. Although the pasture matrix, forest edge, and forest interior experienced differences in light and temperature, leaf position in the canopy produced microclimatic variations, which modified gas exchange and anatomy. Thus, O. odorifera shows the potential for reforestation programs because of its high leaf plasticity, which will enable it to overcome variations in light and temperature.


2006 ◽  
Vol 42 (2) ◽  
pp. 147-164 ◽  
Author(s):  
J. C. RONQUIM ◽  
C. H. B. A. PRADO ◽  
P. NOVAES ◽  
J. I. FAHL ◽  
C. C. RONQUIM

Three cultivars of Coffea arabica, Catuaí Vermelho IAC 81, Icatu Amarelo IAC 2944 and Obatã IAC 1669–20, were evaluated in relation to leaf gas exchange and potential photochemical efficiency of photosystem II under field conditions on clear and cloudy days in the wet season in southeast Brazil. Independent of levels of irradiance, leaf water potential (υleaf) values were always higher than the minimum required to affect daily net photosynthesis (PN). PN, stomatal conductance (gs), leaf transpiration (E) and the index of photochemical efficiency (Fv/Fm) declined on a clear day in all cultivars. The depression of leaf gas exchange and Fv/Fm (specially around midday) caused a strong decrease (about 70 %) in daily carbon gain on a clear day. Under cloudless conditions, gs and PN were correlated with the air vapour pressure deficit (VPDair), but not with photosynthetic photon flux density (PPFD) values. On a cloudy day, the daily carbon gain was barely limited by PPFD below 800 μmol m−2 s−1, the Fv/Fm values showed a slight decrease around midday, and gs and PN were positively correlated with PPFD but not with VPDair. By contrast, irrespective of the contrasting irradiance conditions during the day, PN and E were correlated with gs.


Sign in / Sign up

Export Citation Format

Share Document