scholarly journals Climate projections of chill hours and implications for olive cultivation in Minas Gerais, Brazil

Author(s):  
Fabrina Bolzan Martins ◽  
Rodolfo Armando de Almeida Pereira ◽  
Roger Rodrigues Torres ◽  
Diego Felipe dos Santos

Abstract: The objective of this work was to determine the accumulation of chill hours and to define the areas with aptitude for olive (Olea europaea) cultivation in the state of Minas Gerais, Brazil, as well as to analyze the impacts of climate change projections on chilling-hour requirements and climatic zoning, in two radiative forcing scenarios. The trigonometric method was used to quantify the number of chill hours, considering base temperatures (Tb) of 7.0, 9.5, and 13°C (high, medium, and low chill, respectively), and was applied to present climate (1983-2012) and to two future climate (2041-2070 and 2071-2100) conditions. The present climate data were obtained from 47 conventional weather stations, and the future climate data were obtained from three Earth system models (IPSL-CM5A-LR, MRI-CGCM3, and MIROC5). Future projections point to a decrease in the suitable areas for olive crop cultivation, particularly under representative concentration pathway (RCP) 8.5 and for olive cultivars with a high-chilling requirement (Tb=7.0ºC). Of the olive cultivars requiring medium chill (Tb=9.5ºC), only 2.6% (RCP 4.5) and 1.6% (RCP 8.5) will be suitable in the extreme south and in higher altitude areas of Minas Gerais, while, of those requiring low chill (Tb=13ºC), 11.8% (RCP 4.5) and 6.7% (RCP 8.5) will be suitable. If the climate projections become true, the cultivation of olive crops will be viable in the southern region and in higher altitude areas of the state of Minas Gerais.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruth Kerry ◽  
Ben Ingram ◽  
Esther Garcia-Cela ◽  
Naresh Magan ◽  
Brenda V. Ortiz ◽  
...  

AbstractAflatoxins (AFs) are produced by fungi in crops and can cause liver cancer. Permitted levels are legislated and batches of grain are rejected based on average concentrations. Corn grown in Southern Georgia (GA), USA, which experiences drought during the mid-silk growth period in June, is particularly susceptible to infection by Aspergillus section Flavi species which produce AFs. Previous studies showed strong association between AFs and June weather. Risk factors were developed: June maximum temperatures > 33 °C and June rainfall < 50 mm, the 30-year normals for the region. Future climate data were estimated for each year (2000–2100) and county in southern GA using the RCP 4.5 and RCP 8.5 emissions scenarios. The number of counties with June maximum temperatures > 33 °C and rainfall < 50 mm increased and then plateaued for both emissions scenarios. The percentage of years thresholds were exceeded was greater for RCP 8.5 than RCP 4.5. The spatial distribution of high-risk counties changed over time. Results suggest corn growth distribution should be changed or adaptation strategies employed like planting resistant varieties, irrigating and planting earlier. There were significantly more counties exceeding thresholds in 2010–2040 compared to 2000–2030 suggesting that adaptation strategies should be employed as soon as possible.


2013 ◽  
Vol 6 (2) ◽  
pp. 3349-3380 ◽  
Author(s):  
P. B. Holden ◽  
N. R. Edwards ◽  
P. H. Garthwaite ◽  
K. Fraedrich ◽  
F. Lunkeit ◽  
...  

Abstract. Many applications in the evaluation of climate impacts and environmental policy require detailed spatio-temporal projections of future climate. To capture feedbacks from impacted natural or socio-economic systems requires interactive two-way coupling but this is generally computationally infeasible with even moderately complex general circulation models (GCMs). Dimension reduction using emulation is one solution to this problem, demonstrated here with the GCM PLASIM-ENTS. Our approach generates temporally evolving spatial patterns of climate variables, considering multiple modes of variability in order to capture non-linear feedbacks. The emulator provides a 188-member ensemble of decadally and spatially resolved (~ 5° resolution) seasonal climate data in response to an arbitrary future CO2 concentration and radiative forcing scenario. We present the PLASIM-ENTS coupled model, the construction of its emulator from an ensemble of transient future simulations, an application of the emulator methodology to produce heating and cooling degree-day projections, and the validation of the results against empirical data and higher-complexity models. We also demonstrate the application to estimates of sea-level rise and associated uncertainty.


Author(s):  
Yan Ma ◽  
Guillaume Vigouroux ◽  
Zahra Kalantari ◽  
Romain Goldenberg ◽  
Georgia Destouni

Hydroclimatic change may affect the range of some infectious diseases, including tularemia. Previous studies have investigated associations between tularemia incidence and climate variables, with some also establishing quantitative statistical disease models based on historical data, but studies considering future climate projections are scarce. This study has used and combined hydro-climatic projection outputs from multiple global climate models (GCMs) in phase six of the Coupled Model Intercomparison Project (CMIP6), and site-specific, parameterized statistical tularemia models, which all imply some type of power-law scaling with preceding-year tularemia cases, to assess possible future trends in disease outbreaks for six counties across Sweden, known to include tularemia high-risk areas. Three radiative forcing (emissions) scenarios are considered for climate change projection until year 2100, incuding low (2.6 Wm−2), medium (4.5 Wm−2), and high (8.5 Wm−2) forcing. The results show highly divergent changes in future disease outbreaks among Swedish counties, depending primarily on site-specific type of the best-fit disease power-law scaling characteristics of (mostly positive, in one case negative) sub- or super-linearity. Results also show that scenarios of steeper future climate warming do not necessarily lead to steeper increase of future disease outbreaks. Along a latitudinal gradient, the likely most realistic medium climate forcing scenario indicates future disease decreases (intermittent or overall) for the relatively southern Swedish counties Örebro and Gävleborg (Ockelbo), respectively, and disease increases of considerable or high degree for the intermediate (Dalarna, Gävleborg (Ljusdal)) and more northern (Jämtland, Norrbotten; along with the more southern Värmland exception) counties, respectively.


Author(s):  
Diego F. dos Santos ◽  
◽  
Fabrina B. Martins ◽  
Roger R. Torres

ABSTRACT Minas Gerais is vulnerable to climate change, with negative impacts on water balance and changes in the cultivation of several crops. Currently, the olive crop has been an alternative source for farmers, especially those in the South of the state. However, there is no information on areas with climatic conditions suitable for olive cultivation, as well as the possible impacts of climate change. The aim of this study was to verify the impact of climate projections on water balance and agroclimatic zoning for olive cultivation in the Minas Gerais, based on current climate conditions (1980-2011), and different climate change projections for three future periods (2011-2040, 2041-2070 and 2071-2100). For the current climate, Minas Gerais showed 37% of suitable area, 15% of marginal area and 48% of unsuitable area for olive cultivation. For the period 2071-2100, only 4% was classified as suitable area, 6% as marginal area and 90% as unsuitable. Projections of climate change, of both temperature and rainfall, will affect the olive cultivation, substantially reducing the suitable area in the entire state.


Author(s):  
Selam Kidanemariam ◽  
Haddush Goitom ◽  
Yigzaw Desta

Abstract This research assesses the streamflow response of Werie River to climate change. Baseline (1980–2009) climate data of precipitation, maximum and minimum temperature were analyzed using delta based statistical downscaling approach in R software packages to predict future 90 years (2010–2099) periods under two emission scenarios of Representative Concentration Pathways (RCP) 4.5 and RCP 8.5, indicating medium and extremely high emission scenarios respectively. Generated future climate variables indicate Werie will experience a significant increase in precipitation, and maximum and minimum air temperature for both RCPs. Further, Water and Energy Transfer between Soil, Plants, and Atmosphere (WetSpa) was applied to assess the water balance of Werie River. The WetSpa model reproduced the streamflow well with performance statistics values of R2 = 0.84 and 0.85, Nash–Sutcliffe efficiency = 0.72 and 0.72, and model bias = –0.14 and –0.15 for the calibration data set of 1999–2010 and validation data of 2011–2014 respectively. Finally, by taking the downscaled future climate variables as input, WetSpa future prediction shows that there will an increase in the Werie catchment mean annual streamflow up to 29.6% for RCP 4.5 and 35.6% for RCP 8.5 compared to the baseline period.


2021 ◽  
pp. 1-17
Author(s):  
Loris Compagno ◽  
Harry Zekollari ◽  
Matthias Huss ◽  
Daniel Farinotti

Abstract Due to climate change, worldwide glaciers are rapidly declining. The trend will continue into the future, with consequences for sea level, water availability and tourism. Here, we assess the future evolution of all glaciers in Scandinavia and Iceland until 2100 using the coupled surface mass-balance ice-flow model GloGEMflow. The model is initialised with three distinct past climate data products (E-OBS, ERA-I, ERA-5), while future climate is prescribed by both global and regional climate models (GCMs and RCMs), in order to analyze their impact on glacier evolution. By 2100, we project Scandinavian glaciers to lose between 67 ± 18% and 90 ± 7% of their present-day (2018) volume under a low (RCP2.6) and a high (RCP8.5) emission scenario, respectively. Over the same period, losses for Icelandic glaciers are projected to be between 43 ± 11% (RCP2.6) and 85 ± 7% (RCP8.5). The projected evolution is only little impacted by both the choice of climate data products used in the past and the spatial resolution of the future climate projections, with differences in the ice volume remaining by 2100 of 7 and 5%, respectively. This small sensitivity is attributed to our model calibration strategy that relies on observed glacier-specific mass balances and thus compensates for differences between climate forcing products.


2014 ◽  
Vol 7 (1) ◽  
pp. 433-451 ◽  
Author(s):  
P. B. Holden ◽  
N. R. Edwards ◽  
P. H. Garthwaite ◽  
K. Fraedrich ◽  
F. Lunkeit ◽  
...  

Abstract. Many applications in the evaluation of climate impacts and environmental policy require detailed spatio-temporal projections of future climate. To capture feedbacks from impacted natural or socio-economic systems requires interactive two-way coupling, but this is generally computationally infeasible with even moderately complex general circulation models (GCMs). Dimension reduction using emulation is one solution to this problem, demonstrated here with the GCM PLASIM-ENTS (Planet Simulator coupled with the efficient numerical terrestrial scheme). Our approach generates temporally evolving spatial patterns of climate variables, considering multiple modes of variability in order to capture non-linear feedbacks. The emulator provides a 188-member ensemble of decadally and spatially resolved (~ 5° resolution) seasonal climate data in response to an arbitrary future CO2 concentration and non-CO2 radiative forcing scenario. We present the PLASIM-ENTS coupled model, the construction of its emulator from an ensemble of transient future simulations, an application of the emulator methodology to produce heating and cooling degree-day projections, the validation of the simulator (with respect to empirical data) and the validation of the emulator (with respect to high-complexity models). We also demonstrate the application to estimates of sea-level rise and associated uncertainty.


2020 ◽  
Author(s):  
Koen De Ridder ◽  
Filip Lefebre ◽  
Eline Vanuytrecht ◽  
Julie Berckmans ◽  
Hendrik Wouters

&lt;p&gt;Biodiversity is increasingly under pressure from climate change, which affects the habitat suitability for species as well as the efficiency of ecosystem services. Management of these issues, for instance through ecosystem restoration or species dispersal measures, is often hindered by a lack of appropriate information about (future) climate conditions.&amp;#160; To address this, an operational Sectoral Information System (SIS) for the Biodiversity sector (SIS Biodiversity) is designed within the Copernicus programme Climate Change Service (C3S). This new SIS provides tailored bio-climatic indicators and applications, and delivers novel evidence regarding impacts of past, present and future climate. As such, it provides support to decision making challenges that are currently facing unmet climate data needs.&lt;br&gt;&amp;#160;&lt;br&gt;The new climate service for SIS Biodiversity will be demonstrated, including the outline, workflow and outcomes of the use cases. The service is built upon the Copernicus Data Store platform (CDS; ), and takes into account (1) the barriers in ongoing bio-climate assessments and (2) the user requirements of diverse stakeholders (e.g. researcher institutes, local NGO&amp;#8217;s, the International Union for Conservation of Nature and Natural Resources (IUCN),&amp;#8230;). These have been collected during workshops and bilateral meetings in 2019. A common barrier is the lack of reliable and high-resolution information about states and dynamics of the soil, sea, ice and air for the past and the future climate. Therefore, the service provides relevant bio-climatic indicators on the basis of a wealth of available variables from the latest ERA5 reanalysis datasets and the CMIP5 global climate projections available in CDS. In order to provide information at high resolution and minimize inconsistencies between observed and modelled variables, different downscaling and bias-correction techniques are applied. A common requirement is a universal and flexible interface to the bio-climatic indicators in an easy-to-use and coherent platform that is applicable for different fauna and flora species of interest. Therefore, different applications have been developed within CDS for generating bio-climate suitability envelopes from the high-resolution indicators and to evaluate climate suitability and impacts for the species under present and future climate. Finally, the service is currently tested and refined on the basis of specific use cases. Special attention is given to their transferability to other global and topical studies, hence maximizing external user uptake throughout existing research and policy networks.&lt;/p&gt;


2020 ◽  
Author(s):  
Peter Cox

&lt;p&gt;Earth System Models (ESMs) are designed to project changes in the climate-carbon cycle system over the coming centuries. These models agree that the climate will change significantly under feasible scenarios of future CO&lt;sub&gt;2&lt;/sub&gt;emissions. However, model projections still cover a wide range for any given scenario, which impedes progress on tackling climate change. Estimates of the Transient Climate Response to Emissions (TCRE), and therefore of remaining carbon budgets, are affected by uncertainties in the response of land and ocean carbon sinks to changes in climate and CO&lt;sub&gt;2&lt;/sub&gt;, and also by continuing uncertainties in the sensitivity of climate to radiative forcing. Over the last 7 years Emergent Constraints have been proposed on many of the key uncertainties. Emergent constraints use the full range of model behaviours to find relationships between measureable aspects of present and past climates, and future climate projections. This presentation will summarise proposed emergent constraints of relevance to future climate-carbon cycle projections, and discuss the implications for the remaining carbon budgets for stabilisation at 1.5K and 2K.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document