scholarly journals Incidence of storage fungi and hydropriming on soybean seeds

2013 ◽  
Vol 35 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Denis Santiago da Costa ◽  
Nathalie Bonassa ◽  
Ana Dionisia da Luz Coelho Novembre

Priming is a technique applicable to seeds of various plant species; however, for soybean seed there is little available information correlating such technique to the storage fungi. The objective of this study was to assess hydropriming on soybeans seeds and correlate this technique to occurrence of such fungi. For this, soon after acquisition the soybean seeds, cv. M-SOY 7908 RR, were characterized by: moisture content, mechanical damage, viability (seed germination and seedling emergence) and seed health. A completely randomized experimental design was used with treatments arranged into a factorial scheme 2 × 2 [2 levels of incidence of storage fungi (low and high) × 2 hydropriming (with and without) ]. After application of treatments, the seeds were analyzed by: moisture content, viability (seed germination and seedling emergence) and vigor (first count and accelerated aging). The hydropriming is beneficial to improve the quality of soybean seeds with low incidence of storage fungi, with increments on speed germination (first count) and seed germination after accelerated aging test. The high incidence of microorganisms can reduce the hydropriming benefits.

2020 ◽  
Vol 42 ◽  
Author(s):  
Mayara Rodrigues ◽  
Francisco G. Gomes-Junior ◽  
Julio Marcos-Filho

Abstract: Computerized systems for image analysis are alternatives to decrease the subjectivity and speed of assessment of seed physiological potential. The aim of this study was to determine the efficiency of the Seed Vigor Automated Analysis System (Vigor-S) to identify differences in vigor among soybean seed lots compared to results of the Seed Vigor Imaging System - SVIS® and tests recommended for evaluation of soybean seed vigor. Two cultivars were used, BMX Potência RR and 7166 RSF IPRO, each one represented by ten seed lots with similar germination and vigor differences. The seeds were evaluated regarding germination, vigor (tetrazolium, accelerated aging), seedling emergence in the field and SVIS® and Vigor-S analysis, in three experimental periods. Analysis of variance was used on the data in a completely randomized experimental design (laboratory tests) and in randomized blocks (field tests), and the mean values were compared by the Tukey test (p ≤ 0.05). Separation of the seed lots by Vigor-S was consistent with the results obtained in tests recognized as effective in evaluating the physiological potential of soybean seeds, and there was no interference of the different cultivars on the response pattern for vigor. Analysis through Vigor-S proved to be effective in determination of physiological potential and for composition of quality control programs established by soybean seeds production companies.


2017 ◽  
Vol 39 (4) ◽  
pp. 374-384
Author(s):  
Cesar Pedro Hartmann Filho ◽  
André Luís Duarte Goneli ◽  
Tathiana Elisa Masetto ◽  
Elton Aparecido Siqueira Martins ◽  
Guilherme Cardoso Oba

Abstract: This study evaluated the physiological potential of soybean seeds harvested during two seasons, on different maturation stages and subjected to different drying temperatures. The seeds were harvested at the maturations stages R7, R7 + 2, R7 + 3, R7 + 5, R7 + 6, R7 + 7, R7 + 10 and R7 + 12 days (55, 50, 45, 40, 35, 30, 25, and 20% of moisture content). For each maturation stage, seeds were divided into three samples: one sample was used to directly evaluate the physiological potential, and the others were dried at 40 °C and 50 °C, until reaching the moisture content of 11.5%. The physiological potential was evaluated through germination test, first germination count of germination, accelerated aging, modified cold, electrical conductivity and seedling emergence. The maximum physiological potential of seeds is achieved at the moisture content of 55%, the point that the dry matter is maximum. The seeds became tolerant to artificial drying approximately at the stage R7 + 7 days (30% of moisture content). Germination and vigor of the soybean seeds reduce as the drying temperature is increased from 40 °C to 50 °C, and this effect is enhanced when the seeds show moisture contents above 30%.


2018 ◽  
Vol 10 (8) ◽  
pp. 468
Author(s):  
C. R. Bork ◽  
A. S. Almeida ◽  
C. S. Castellano ◽  
G. Zimmer ◽  
T. D. Avila ◽  
...  

The aim of this study was to analyze soybean seed physiological quality after being subjected to various mixtures of pesticides via industrial seed treatment. The experiment was performed at the seed laboratory of the company BioGrow, located at São Paulo-SP, using soybean seeds cultivar NS 6700 IPRO which were subjected to 11 different treatments. Seed treatment was carried out using a treater Momesso, model L5-K, calibrated to apply a spray volume of 0.5 L 100 kg-1 of seeds in which the volume of each treatment was adjusted using distilled water. After treatment, seeds were spread over plastic strays for drying for a period of 24 hours under environmental conditions. Once dry, seeds were packed in paper bags and stored for 0 (control), 45, 90, 135 and 180 days, under uncontrolled conditions of temperature and relative humidity, when seed physiological quality was evaluated using the following tests: germination, accelerated aging, seedling emergence, speed of emergence index and speed of emergence. Soybean industrial seed treatment before storage for up to 180 days is practicable using the mixtures of pesticides tested for storing seeds under environmental conditions. All treatments tested contribute to the maintenance of seed quality throughout storage.


2018 ◽  
Vol 40 (4) ◽  
pp. 422-427
Author(s):  
Rodrigo Albaneze ◽  
Francisco Amaral Villela ◽  
Jean Carlo Possenti ◽  
Karina Guollo ◽  
Ivan Carlos Riedo

Abstract: Mechanical damage constitutes one of the factors limiting production of high quality soybean seeds. The aim of this study was to evaluate the effects on seed viability and mechanical damage caused to soybean seeds when using a grain cart, together with an auger unloading system, as a means of transporting grain from the combine to the truck. Seed samples were collected in two seed production fields in the region of Abelardo Luz, SC, Brazil, at three different times (10:00, 12:30, and 16:00) and from three places (in the combine grain tank, in the grain wagon, and in the truck). The percentages of broken seeds, moisture content, mechanical damage to the seed coat, and germination were evaluated. The use of auxiliary grain cart equipment contributed to an increase in breakage and mechanical injury in seeds, worsening seed viability. Seeds collected at lower moisture contents had higher breakage and higher rates of mechanical damage.


2018 ◽  
Vol 40 (3) ◽  
pp. 272-280 ◽  
Author(s):  
Lucas Caiubi Pereira ◽  
Mayara Mariana Garcia ◽  
Alessandro Lucca Braccini ◽  
Gláucia Cristina Ferri ◽  
Andreia Kazumi Suzukawa ◽  
...  

Abstract: The aim of this study was to evaluate the effect of industrial seed treatments on the physiological potential of soybean seeds over storage. Four mixtures of agrochemical products in association with two fertilizers were tested. The agrochemical product mixtures were carbendazim/thiram + imidacloprid/thiodicarb; pyraclostrobin, thiophanate-methyl, and fipronil; thiophanate-methyl/fluazinam + bifenthrin/imidacloprid; and metalaxyl-m/fludioxonil + thiamethoxam. The two fertilizers were 7% N, 16% P2O5, 0.6% Co, and 2.5% Mo; and 1% Co, 10% Mo, and 7% P2 O5. The experiment was carried out in a completely randomized design in a split-plot arrangement in time, with four replications. The treatments were allocated in the plots, while the storage periods (0, 30, 60, 90, and 120 days) constituted the split-plots. The following tests were carried out in each period: first count of germination, germination, accelerated aging, emergence speed index in sand substrate, and final seedling emergence in sand substrate. Seed germination and vigor declined over the storage period, especially after industrial treatment. Pesticide mixtures of a carbendazim/thiram fungicide base and an imidacloprid/thiodicarb insecticide base most impaired seed physiological potential throughout storage, regardless of fertilizer use in the industrial treatment.


2004 ◽  
Vol 26 (1) ◽  
pp. 120-124 ◽  
Author(s):  
Silmar T. Peske ◽  
Alberto Höfs ◽  
Elton Hamer

It is common to see in any soybean plant that seeds reach maturity at different times. Thus the objective of the present study was to determine the magnitude of the seed moisture range at different stages of maturation in a soybean plant. The field study was conducted in a tropical region in the state of Mato Grosso - Brazil, established with foundation seeds of the MTBR-45 cultivar, and at flowering, 100 plants were marked at the same maturity stage. Harvesting began when seeds still were at high moisture content (MC). At each of eight harvesting times, during 16 days, all pods from two plants were harvested and the seeds from each pod were hand threshed individually and determined the moisture content . The results revealed that there is a great distribution of seed MC in a soybean plant, where at physiological maturity, the magnitude can reach more than 30 percentage points. Also, even with an average MC below 12%, there were more than 20 % of the seeds with MC above 13% and some seeds at this point had been waiting to be harvested for more than a week. The following conclusions and/or recommendations can be taken: 1- The great seed MC range in a soybean seed lot harvested at field maturity leads to the presence of seeds susceptible to mechanical damage and with MC unsafe for adequate storage; 2 - It is recommended that harvesting be accomplished when the seeds are in the 15-18% MC range, in order to minimize field deterioration and the percentage of seeds with high MC; 3- Drying is recommended, even when soybean seeds are in their average MC safe for storage.


2021 ◽  
Vol 43 ◽  
Author(s):  
Gustavo Roberto Fonseca de Oliveira ◽  
Silvio Moure Cicero ◽  
Francisco Guilhien Gomes-Junior ◽  
Thiago Barbosa Batista ◽  
Francisco Carlos Krzyzanowski ◽  
...  

Abstract: Chemical treatment of soybean seeds is very important to ensure successful crop establishment. However, problems such as phytotoxicity of product combinations that can reduce seed physiological performance require attention. The use of computational resources has shown potential in identifying phytotoxic effects and contributing to the steps of quality control of treated seeds. The aim of this study was to determine if computerized image analysis of seedlings enables the phytotoxicity of chemical treatment of soybean seeds to be assessed in an effective and simplified manner. Samples from two soybean seed lots were treated with fungicides, insecticides, micronutrients, and their combinations, as well as with polymer and drying powder (coatings). After chemical treatment, the seeds were evaluated for germination, first germination count, seedling emergence in sand, accelerated aging, and seedling performance with and without the correction of regions not automatically demarcated (Vigor-S). We found high correlation of the Vigor-S parameters with the traditional tests for detection of phytotoxic effects of chemical treatment, regardless of correction made in the system. Computerized image analysis of seedlings is an effective and highly sensitive resource for evaluating possible phytotoxicity effects due to chemical treatment of soybean seeds.


Plant Disease ◽  
1998 ◽  
Vol 82 (5) ◽  
pp. 584-589 ◽  
Author(s):  
R. R. Walcott ◽  
D. C. McGee ◽  
M. K. Misra

Different levels of asymptomatic, seed-borne infection by storage fungi (Aspergillus and Penicillium spp.) or Phomopsis seed decay (PSD) (Phomopsis longicolla, Diaporthe phaseolorum var. sojae, and D. phaseolorum var. caulivora) were induced in sub-lots of separate soybean seed lots by incubation of seeds or pods, respectively, for different times at 25°C and at a relative humidity >95%. Seeds were then air-dried to a constant moisture content in the laboratory atmosphere, and each sub-lot was tested for incidence of infection, germination, and moisture content. Individual seeds in each sub-lot also were dropped 10 cm onto a transducer in an ultrasound analyzer. The average peak value of the ultrasound signals for each sub-lot, which indicates the weight of seeds, decreased linearly as the incidence of seed infection by storage fungi (r2 = 0.85) or PSD (r2 =0.82) increased. The slope and width of the signal, which indicates seed softness, increased as seed infection increased for both groups of fungi, although coefficients of determination were lower (r2 ranged from 0.42 to 0.59). Germination values, which decreased as seed infection for both pathogens increased, showed similar but inverse relationships to ultrasound parameters. Peak values of ultrasound signals decreased, and slope and width increased, as seed moisture content increased for sub-lots of soybeans at three levels of infection by Phomopsis seed decay. The potential for ultrasound technology to identify soybean seeds with asymptomatic infections of seed-borne pathogens was thus established.


2011 ◽  
Vol 3 (3) ◽  
pp. 126-129 ◽  
Author(s):  
Zahra RASTEGAR ◽  
Mohammad SEDGHI ◽  
Saeid KHOMARI


2004 ◽  
Vol 61 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Roberval Daiton Vieira ◽  
Angelo Scappa Neto ◽  
Sonia Regina Mudrovitsch de Bittencourt ◽  
Maristela Panobianco

Vigor of soybean [Glycine max (L.) Merrill] seeds can be evaluated by measuring the electrical conductivity (EC) of the seed soaking solution, which has shown a satisfactory relationship with field seedling emergence, but has not had aproper definition of range yet. This work studies the relationship between EC and soybean seedling emergence both in the field and laboratory conditions, using twenty two seed lots. Seed water content, standard germination and vigor (EC, accelerated aging and cold tests) were evaluated under laboratory conditions using -0.03; -0.20; -0.40 and -0.60 MPa matric potentials, and field seedling emergence was also observed. There was direct relationship between EC and field seedling emergence (FE). Under laboratory conditions, a decreasing relationship was found between EC and FE as water content in the substrate decreased. Relationships between these two parameters were also found when -0.03; -0.20 and -0.40 MPa matric potentials were used. EC tests can be used successfully to evaluate soybean seed vigor and identify lots with higher or lower field emergence potential.


Sign in / Sign up

Export Citation Format

Share Document