scholarly journals Mechanical damage caused by the use of grain carts for transport during soybean seed harvest

2018 ◽  
Vol 40 (4) ◽  
pp. 422-427
Author(s):  
Rodrigo Albaneze ◽  
Francisco Amaral Villela ◽  
Jean Carlo Possenti ◽  
Karina Guollo ◽  
Ivan Carlos Riedo

Abstract: Mechanical damage constitutes one of the factors limiting production of high quality soybean seeds. The aim of this study was to evaluate the effects on seed viability and mechanical damage caused to soybean seeds when using a grain cart, together with an auger unloading system, as a means of transporting grain from the combine to the truck. Seed samples were collected in two seed production fields in the region of Abelardo Luz, SC, Brazil, at three different times (10:00, 12:30, and 16:00) and from three places (in the combine grain tank, in the grain wagon, and in the truck). The percentages of broken seeds, moisture content, mechanical damage to the seed coat, and germination were evaluated. The use of auxiliary grain cart equipment contributed to an increase in breakage and mechanical injury in seeds, worsening seed viability. Seeds collected at lower moisture contents had higher breakage and higher rates of mechanical damage.

2013 ◽  
Vol 35 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Denis Santiago da Costa ◽  
Nathalie Bonassa ◽  
Ana Dionisia da Luz Coelho Novembre

Priming is a technique applicable to seeds of various plant species; however, for soybean seed there is little available information correlating such technique to the storage fungi. The objective of this study was to assess hydropriming on soybeans seeds and correlate this technique to occurrence of such fungi. For this, soon after acquisition the soybean seeds, cv. M-SOY 7908 RR, were characterized by: moisture content, mechanical damage, viability (seed germination and seedling emergence) and seed health. A completely randomized experimental design was used with treatments arranged into a factorial scheme 2 × 2 [2 levels of incidence of storage fungi (low and high) × 2 hydropriming (with and without) ]. After application of treatments, the seeds were analyzed by: moisture content, viability (seed germination and seedling emergence) and vigor (first count and accelerated aging). The hydropriming is beneficial to improve the quality of soybean seeds with low incidence of storage fungi, with increments on speed germination (first count) and seed germination after accelerated aging test. The high incidence of microorganisms can reduce the hydropriming benefits.


2004 ◽  
Vol 26 (1) ◽  
pp. 120-124 ◽  
Author(s):  
Silmar T. Peske ◽  
Alberto Höfs ◽  
Elton Hamer

It is common to see in any soybean plant that seeds reach maturity at different times. Thus the objective of the present study was to determine the magnitude of the seed moisture range at different stages of maturation in a soybean plant. The field study was conducted in a tropical region in the state of Mato Grosso - Brazil, established with foundation seeds of the MTBR-45 cultivar, and at flowering, 100 plants were marked at the same maturity stage. Harvesting began when seeds still were at high moisture content (MC). At each of eight harvesting times, during 16 days, all pods from two plants were harvested and the seeds from each pod were hand threshed individually and determined the moisture content . The results revealed that there is a great distribution of seed MC in a soybean plant, where at physiological maturity, the magnitude can reach more than 30 percentage points. Also, even with an average MC below 12%, there were more than 20 % of the seeds with MC above 13% and some seeds at this point had been waiting to be harvested for more than a week. The following conclusions and/or recommendations can be taken: 1- The great seed MC range in a soybean seed lot harvested at field maturity leads to the presence of seeds susceptible to mechanical damage and with MC unsafe for adequate storage; 2 - It is recommended that harvesting be accomplished when the seeds are in the 15-18% MC range, in order to minimize field deterioration and the percentage of seeds with high MC; 3- Drying is recommended, even when soybean seeds are in their average MC safe for storage.


2017 ◽  
Vol 39 (4) ◽  
pp. 374-384
Author(s):  
Cesar Pedro Hartmann Filho ◽  
André Luís Duarte Goneli ◽  
Tathiana Elisa Masetto ◽  
Elton Aparecido Siqueira Martins ◽  
Guilherme Cardoso Oba

Abstract: This study evaluated the physiological potential of soybean seeds harvested during two seasons, on different maturation stages and subjected to different drying temperatures. The seeds were harvested at the maturations stages R7, R7 + 2, R7 + 3, R7 + 5, R7 + 6, R7 + 7, R7 + 10 and R7 + 12 days (55, 50, 45, 40, 35, 30, 25, and 20% of moisture content). For each maturation stage, seeds were divided into three samples: one sample was used to directly evaluate the physiological potential, and the others were dried at 40 °C and 50 °C, until reaching the moisture content of 11.5%. The physiological potential was evaluated through germination test, first germination count of germination, accelerated aging, modified cold, electrical conductivity and seedling emergence. The maximum physiological potential of seeds is achieved at the moisture content of 55%, the point that the dry matter is maximum. The seeds became tolerant to artificial drying approximately at the stage R7 + 7 days (30% of moisture content). Germination and vigor of the soybean seeds reduce as the drying temperature is increased from 40 °C to 50 °C, and this effect is enhanced when the seeds show moisture contents above 30%.


2002 ◽  
Vol 65 (12) ◽  
pp. 1984-1987 ◽  
Author(s):  
J. E. MELLON ◽  
P. J. COTTY

Soybean lines lacking lipoxygenase (LOX) activity were compared with soybean lines having LOX activity for the ability to support growth and aflatoxin B1 production by the fungal seed pathogen Aspergillus flavus. Whole seeds, broken seeds, and heat-treated (autoclaved) whole seeds were compared. Broken seeds, irrespective of LOX presence, supported excellent fungal growth and the highest aflatoxin levels. Autoclaved whole seeds, with or without LOX, produced good fungal growth and aflatoxin levels approaching those of broken seeds. Whole soybean seeds supported sparse fungal growth and relatively low aflatoxin levels. There was no significant difference in aflatoxin production between whole soybean seeds either with or without LOX, although there did seem to be differences among the cultivars tested. The heat treatment eliminated LOX activity (in LOX+ lines), yet aflatoxin levels did not change substantially from the broken seed treatment. Broken soybean seeds possessed LOX activity (in LOX+ lines) and yet yielded the highest aflatoxin levels. The presence of active LOX did not seem to play the determinant role in the susceptibility of soybean seeds to fungal pathogens. Seed coat integrity and seed viability seem to be more important characteristics in soybean seed resistance to aflatoxin contamination. Soybean seeds lacking LOX seem safe from the threat of increased seed pathogen susceptibility.


2018 ◽  
Vol 40 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Danielle Helena Müller ◽  
Elisangela Clarete Camili ◽  
Walcylene Lacerda Matos Pereira Scaramuzza ◽  
Maria Cristina de Figueiredo e Albuquerque

Abstract: The objective of this study was to evaluate the spatial variability in soybean seeds quality and in soil chemical attributes of a production field. Data were collected at 138 georeferenced points of a soybean production property located in Santo Antônio de Leverger - MT. Soil related variables, such as phosphorus, potassium, calcium, magnesium, and organic matter (OM) contents, pH, cation exchange capacity (CEC) and base saturation (V%) were evaluated. On the other hand, yield, one thousand seed mass, size, germination, emergence in seedbed, electrical conductivity, accelerated aging and tetrazolium reaction were evaluated as seed variables. The data were submitted to descriptive and geostatistical analysis, and the fit semivariogram parameters were used to elaborate spatial distribution maps of the analyzed variables. After the analysis, it was possible to conclude that there was spatial variability in the evaluated attributes for both seeds and soil related variables, indicating that the soybean seed production area can be divided into management zones, which allows the definition of areas to be harvested or discarded within a field of seed production.


2012 ◽  
Vol 45 (3) ◽  
pp. 5-13
Author(s):  
F. Shahbazi ◽  
A Dowlatshah ◽  
S. Valizadeh

Abstract Mechanical damage of seeds due to harvest, handling and other process is an important factor that affects the quality and quantity of seeds. Seed damage result in lower grain value, storability problem, and reduced seed germination and seedling vigor and subsequent yield of crops. The objective of this research was to determine the effects of moisture content and impact energy on the breakage susceptibility of wheat and triticale seeds. The experiments were conducted at five moisture contents of 7.5, 12, 17, 22 and 27% w.b. and at the impact energies of 0.05 and 0.1 J. The percentage of breakage of both wheat and triticale seeds increased as impact energy increased. The analysis of variance showed that there was a significant difference between breakage susceptibility of wheat and triticale seeds at the 1% probability level. Triticale seeds had more breakage than wheat seeds. For both wheat and triticale seeds as the moisture content of the seeds increased, the amount of the percentage breakage of seeds decreased as a polynomial. The average values of percentage breakage of wheat seeds decreased from 43.81 to 19.88% as the moisture content increased from 7.5 to 27%. Over this same moisture content range the percentage breakage of triticale seeds varied from 81.34 to 37.77%. Below the moisture contents of 17% for the wheat and 22% for the triticale the percentage breakage of seeds increased dramatically.


HortScience ◽  
2007 ◽  
Vol 42 (6) ◽  
pp. 1436-1439 ◽  
Author(s):  
H.J. Hill ◽  
Jesse D. Cunningham ◽  
Kent J. Bradford ◽  
A.G. Taylor

The Ellis-Roberts seed viability equation is used to predict seed survival after storage at specified temperatures and moisture contents. Seed priming, which can break dormancy and accelerate germination, can also reduce seed storage life. Because primed seeds were not used in developing the Ellis-Roberts equation, the reciprocal nature of specific seed moisture content (MC, fresh weight basis) and temperatures that applies to nonprimed lettuce (Lactuca sativa L.) seeds may not apply to primed seeds. To determine how priming affects lettuce seeds in relation to the viability equation, an experiment was conducted using two cultivars, ‘Big Ben’ and ‘Parris Island Cos’. Seeds primed in polyethylene glycol 8000 (–1.45 MPa, 24 h at 15 °C) and nonprimed seeds were first adjusted to 6% and 9% moisture contents and then stored at 48 and 38 °C for up to 30 days, respectively. These storage conditions (6% MC and 48 °C; 9% MC and 38 °C) were predicted by the viability equation to result in equal longevities. Subsequent viability assays at 20 °C revealed that nonprimed seeds in both storage environments exhibited similar losses in viability over time, thus validating the Ellis-Roberts equation and the use of these conditions to apply different but equal aging stress. Primed seeds of both cultivars deteriorated faster than nonprimed seeds as expected. However, primed seeds did exhibit different rates of deterioration between the storage environments. Primed seeds stored at 9% MC and 38 °C deteriorated faster than primed seeds stored at 6% MC and 48 °C. The rate of decline in probit viability percentage was three times greater in primed ‘Big Ben’ seeds stored at 9% MC and 38 °C than for those stored at 6% MC and 48 °C (–1.34 versus –0.26 probits per day, respectively). ‘Parris Island Cos’ seeds stored at 9% MC and 38 °C had twice the rate of deterioration that those stored at 6% MC and 48 °C (–1.19 and –0.49 probits per day, respectively). The results indicate that primed lettuce seeds were more sensitive to the adverse effects of higher seed MC than were nonprimed seeds during storage at elevated temperatures.


2018 ◽  
Vol 5 (2) ◽  
pp. 91-96 ◽  
Author(s):  
Marcos Altomani Neves Dias ◽  
André Kitaro Mocelin Urano ◽  
Deborah Bueno Da Silva ◽  
Silvio Moure Cicero

Seed treatment (ST) is an important practice for soybean crop. This research had the objective to evaluate the influence of seed moisture content in the response to different spray volumes (SV) used for seed treatment in soybean, considering effects on seed physiological quality. Three seed lots with distinct moistures were used: 7.2%, 10.1% and 13.0%. Untreated seeds (control) and three SV were tested: 8, 13 and 18 mL kg-1. All lots received the same treatment combination, containing insecticide, fungicide, fertilizer and biostimulant. This combination represented 8 mL kg-1 of SV; the doses of 13 and 18 mL kg-1 were obtained by adding 5 and 10 mL kg-1 of water, respectively. Evaluations of seed physiological quality consisted of electrical conductivity, seed respiration, germination and vigor tests. Results of all tests demonstrates that low-moisture soybean seeds (7.2%) are negatively affected by seed treatment within an SV range of 8 to 18 mL kg-1, while untreated seeds with equal moisture are not affected. Oppositely, high-moisture seeds (13.0%) are not affected by the SV tested, while intermediate-moisture seeds (10.1%) are affected by the higher SV. This result highlights seed moisture as a key parameter to be managed before soybean ST, aiming to maintain a high physiological quality.


2020 ◽  
Author(s):  
Lara Demonsais ◽  
Anne Utz-Pugin ◽  
Sylvain Loubéry ◽  
Luis Lopez-Molina

ABSTRACTSeeds are a late land plant evolution innovation that promoted the striking spread and diversity of angiosperms. The seed coat is a specialized dead tissue protecting the plant embryo from mechanical damage. In many species, including Arabidopsis thaliana, the seed coat also achieves a remarkable balancing act: it limits oxygen uptake, avoiding premature embryo oxidative damage, but not entirely so as to enable seed dormancy release. The seed coat biophysical features implementing the striking physiological properties of the seed remain poorly understood. Tannins, a type of flavonoids, are antioxidants known to accumulate in the Arabidopsis seed coat and transparent testa (tt) mutant seeds, deficient in flavonoid synthesis, exhibit low dormancy and viability. However, their precise contribution to seed coat architecture and biophysics remains evasive. A seed coat cuticle, covering the endosperm outer surface was, intriguingly, previously shown to be more permeable in tt mutants deficient not in cuticular component synthesis, but rather in flavonoid synthesis. Investigating the role of flavonoids in cuticle permeability led us to identify cell walls, originating from the seed coat inner integument 1 cells, impregnated with tannins. We found that tannic cell walls are tightly associated with the cuticle, forming two fused layers that regulate endosperm permeability. In addition, we show that tannic cell walls are prominent building blocks of the seed coat, constituting a continuous barrier around the seed living tissues. Altogether our findings reveal the existence of tannic cell walls as a previously unrecognized biological barrier sustaining the seed’s key physiological properties.One sentence summaryThe seed coat is largely composed of plant cell walls impregnated with tannins, forming a thick and continuous protective barrier surrounding the embryo promoting seed viability and dormancy.


2013 ◽  
Vol 35 (2) ◽  
pp. 236-239
Author(s):  
Liliane Marcia Mertz ◽  
Fernando Augusto Henning ◽  
Ana Paula Piccinin Barbieri ◽  
Samantha Rigo Segalin ◽  
Francisco Carlos Krzyzanowski ◽  
...  

Lipoxygenase enzymes are relevant in several characteristics of soybean seeds, such as germination performance, storage capacity and tolerance to infection by microorganisms. In this sense, the study of allelic variations of the genes related to that enzyme may be promising for the development of molecular markers associated with phenotypic characteristics which are relevant to seed physiology. This study aimed to identify mutations in lipoxygenase sequence expressed in black soybean seed coat. After isolation of the sequence of interest by the cDNA-AFLP technique, such sequence was compared with sequences of nucleotides and proteins of the lipoxygenase present in yellow soybean seed coat. Analysis of multiple sequence alignment has shown an expressive number of changes in the sequence of nucleotides, which have resulted in the modification of 13 amino acids in the translated protein. The identification of such mutations widens the possibility for further studies involving the association of these allelic variations with phenotypic differences of interest to seeds physiology.


Sign in / Sign up

Export Citation Format

Share Document