scholarly journals GraphER: Token-Centric Entity Resolution with Graph Convolutional Neural Networks

2020 ◽  
Vol 34 (05) ◽  
pp. 8172-8179
Author(s):  
Bing Li ◽  
Wei Wang ◽  
Yifang Sun ◽  
Linhan Zhang ◽  
Muhammad Asif Ali ◽  
...  

Entity resolution (ER) aims to identify entity records that refer to the same real-world entity, which is a critical problem in data cleaning and integration. Most of the existing models are attribute-centric, that is, matching entity pairs by comparing similarities of pre-aligned attributes, which require the schemas of records to be identical and are too coarse-grained to capture subtle key information within a single attribute. In this paper, we propose a novel graph-based ER model GraphER. Our model is token-centric: the final matching results are generated by directly aggregating token-level comparison features, in which both the semantic and structural information has been softly embedded into token embeddings by training an Entity Record Graph Convolutional Network (ER-GCN). To the best of our knowledge, our work is the first effort to do token-centric entity resolution with the help of GCN in entity resolution task. Extensive experiments on two real-world datasets demonstrate that our model stably outperforms state-of-the-art models.

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 771
Author(s):  
Qiang Wei ◽  
Guangmin Hu

Collected network data are often incomplete, with both missing nodes and missing edges. Thus, network completion that infers the unobserved part of the network is essential for downstream tasks. Despite the emerging literature related to network recovery, the potential information has not been effectively exploited. In this paper, we propose a novel unified deep graph convolutional network that infers missing edges by leveraging node labels, features, and distances. Specifically, we first construct an estimated network topology for the unobserved part using node labels, then jointly refine the network topology and learn the edge likelihood with node labels, node features and distances. Extensive experiments using several real-world datasets show the superiority of our method compared with the state-of-the-art approaches.


2022 ◽  
Vol 6 (GROUP) ◽  
pp. 1-25
Author(s):  
Ziyi Kou ◽  
Lanyu Shang ◽  
Yang Zhang ◽  
Dong Wang

The proliferation of social media has promoted the spread of misinformation that raises many concerns in our society. This paper focuses on a critical problem of explainable COVID-19 misinformation detection that aims to accurately identify and explain misleading COVID-19 claims on social media. Motivated by the lack of COVID-19 relevant knowledge in existing solutions, we construct a novel crowdsource knowledge graph based approach to incorporate the COVID-19 knowledge facts by leveraging the collaborative efforts of expert and non-expert crowd workers. Two important challenges exist in developing our solution: i) how to effectively coordinate the crowd efforts from both expert and non-expert workers to generate the relevant knowledge facts for detecting COVID-19 misinformation; ii) How to leverage the knowledge facts from the constructed knowledge graph to accurately explain the detected COVID-19 misinformation. To address the above challenges, we develop HC-COVID, a hierarchical crowdsource knowledge graph based framework that explicitly models the COVID-19 knowledge facts contributed by crowd workers with different levels of expertise and accurately identifies the related knowledge facts to explain the detection results. We evaluate HC-COVID using two public real-world datasets on social media. Evaluation results demonstrate that HC-COVID significantly outperforms state-of-the-art baselines in terms of the detection accuracy of misleading COVID-19 claims and the quality of the explanations.


2020 ◽  
Vol 34 (01) ◽  
pp. 19-26 ◽  
Author(s):  
Chong Chen ◽  
Min Zhang ◽  
Yongfeng Zhang ◽  
Weizhi Ma ◽  
Yiqun Liu ◽  
...  

Recent studies on recommendation have largely focused on exploring state-of-the-art neural networks to improve the expressiveness of models, while typically apply the Negative Sampling (NS) strategy for efficient learning. Despite effectiveness, two important issues have not been well-considered in existing methods: 1) NS suffers from dramatic fluctuation, making sampling-based methods difficult to achieve the optimal ranking performance in practical applications; 2) although heterogeneous feedback (e.g., view, click, and purchase) is widespread in many online systems, most existing methods leverage only one primary type of user feedback such as purchase. In this work, we propose a novel non-sampling transfer learning solution, named Efficient Heterogeneous Collaborative Filtering (EHCF) for Top-N recommendation. It can not only model fine-grained user-item relations, but also efficiently learn model parameters from the whole heterogeneous data (including all unlabeled data) with a rather low time complexity. Extensive experiments on three real-world datasets show that EHCF significantly outperforms state-of-the-art recommendation methods in both traditional (single-behavior) and heterogeneous scenarios. Moreover, EHCF shows significant improvements in training efficiency, making it more applicable to real-world large-scale systems. Our implementation has been released 1 to facilitate further developments on efficient whole-data based neural methods.


Author(s):  
Guibing Guo ◽  
Enneng Yang ◽  
Li Shen ◽  
Xiaochun Yang ◽  
Xiaodong He

Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.


Author(s):  
Chengzhen Fu ◽  
Yan Zhang

Query-document semantic interactions are essential for the success of many cloze-style question answering models. Recently, researchers have proposed several attention-based methods to predict the answer by focusing on appropriate subparts of the context document. In this paper, we design a novel module to produce the query-aware context vector, named Multi-Space based Context Fusion (MSCF), with the following considerations: (1) interactions are applied across multiple latent semantic spaces; (2) attention is measured at bit level, not at token level. Moreover, we extend MSCF to the multi-hop architecture. This unified model is called Enhanced Attentive Reader (EA Reader). During the iterative inference process, the reader is equipped with a novel memory update rule and maintains the understanding of documents through read, update and write operations. We conduct extensive experiments on four real-world datasets. Our results demonstrate that EA Reader outperforms state-of-the-art models.


Author(s):  
Gaode Chen ◽  
Xinghua Zhang ◽  
Yanyan Zhao ◽  
Cong Xue ◽  
Ji Xiang

Sequential recommendation systems alleviate the problem of information overload, and have attracted increasing attention in the literature. Most prior works usually obtain an overall representation based on the user’s behavior sequence, which can not sufficiently reflect the multiple interests of the user. To this end, we propose a novel method called PIMI to mitigate this issue. PIMI can model the user’s multi-interest representation effectively by considering both the periodicity and interactivity in the item sequence. Specifically, we design a periodicity-aware module to utilize the time interval information between user’s behaviors. Meanwhile, an ingenious graph is proposed to enhance the interactivity between items in user’s behavior sequence, which can capture both global and local item features. Finally, a multi-interest extraction module is applied to describe user’s multiple interests based on the obtained item representation. Extensive experiments on two real-world datasets Amazon and Taobao show that PIMI outperforms state-of-the-art methods consistently.


Author(s):  
Lei Feng ◽  
Bo An

Partial label learning deals with the problem where each training instance is assigned a set of candidate labels, only one of which is correct. This paper provides the first attempt to leverage the idea of self-training for dealing with partially labeled examples. Specifically, we propose a unified formulation with proper constraints to train the desired model and perform pseudo-labeling jointly. For pseudo-labeling, unlike traditional self-training that manually differentiates the ground-truth label with enough high confidence, we introduce the maximum infinity norm regularization on the modeling outputs to automatically achieve this consideratum, which results in a convex-concave optimization problem. We show that optimizing this convex-concave problem is equivalent to solving a set of quadratic programming (QP) problems. By proposing an upper-bound surrogate objective function, we turn to solving only one QP problem for improving the optimization efficiency. Extensive experiments on synthesized and real-world datasets demonstrate that the proposed approach significantly outperforms the state-of-the-art partial label learning approaches.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1149
Author(s):  
Thapana Boonchoo ◽  
Xiang Ao ◽  
Qing He

Motivated by the proliferation of trajectory data produced by advanced GPS-enabled devices, trajectory is gaining in complexity and beginning to embroil additional attributes beyond simply the coordinates. As a consequence, this creates the potential to define the similarity between two attribute-aware trajectories. However, most existing trajectory similarity approaches focus only on location based proximities and fail to capture the semantic similarities encompassed by these additional asymmetric attributes (aspects) of trajectories. In this paper, we propose multi-aspect embedding for attribute-aware trajectories (MAEAT), a representation learning approach for trajectories that simultaneously models the similarities according to their multiple aspects. MAEAT is built upon a sentence embedding algorithm and directly learns whole trajectory embedding via predicting the context aspect tokens when given a trajectory. Two kinds of token generation methods are proposed to extract multiple aspects from the raw trajectories, and a regularization is devised to control the importance among aspects. Extensive experiments on the benchmark and real-world datasets show the effectiveness and efficiency of the proposed MAEAT compared to the state-of-the-art and baseline methods. The results of MAEAT can well support representative downstream trajectory mining and management tasks, and the algorithm outperforms other compared methods in execution time by at least two orders of magnitude.


2020 ◽  
Author(s):  
Mikel Joaristi

Unsupervised Graph Representation Learning methods learn a numerical representation of the nodes in a graph. The generated representations encode meaningful information about the nodes' properties, making them a powerful tool for tasks in many areas of study, such as social sciences, biology or communication networks. These methods are particularly interesting because they facilitate the direct use of standard Machine Learning models on graphs. Graph representation learning methods can be divided into two main categories depending on the information they encode, methods preserving the nodes connectivity information, and methods preserving nodes' structural information. Connectivity-based methods focus on encoding relationships between nodes, with neighboring nodes being closer together in the resulting latent space. On the other hand, structure-based methods generate a latent space where nodes serving a similar structural function in the network are encoded close to each other, independently of them being connected or even close to each other in the graph. While there are a lot of works that focus on preserving nodes' connectivity information, only a few works study the problem of encoding nodes' structure, specially in an unsupervised way. In this dissertation, we demonstrate that properly encoding nodes' structural information is fundamental for many real-world applications, as it can be leveraged to successfully solve many tasks where connectivity-based methods fail. One concrete example is presented first. In this example, the task consists of detecting malicious entities in a real-world financial network. We show that to solve this problem, connectivity information is not enough and show how leveraging structural information provides considerable performance improvements. This particular example pinpoints the need for further research on the area of structural graph representation learning, together with the limitations of the previous state-of-the-art. We use the acquired knowledge as a starting point and inspiration for the research and development of three independent unsupervised structural graph representation learning methods: Structural Iterative Representation learning approach for Graph Nodes (SIR-GN), Structural Iterative Lexicographic Autoencoded Node Representation (SILA), and Sparse Structural Node Representation (SparseStruct). We show how each of our methods tackles specific limitations on the previous state-of-the-art on structural graph representation learning such as scalability, representation meaning, and lack of formal proof that guarantees the preservation of structural properties. We provide an extensive experimental section where we compare our three proposed methods to the current state-of-the-art on both connectivity-based and structure-based representation learning methods. Finally, in this dissertation, we look at extensions of the basic structural graph representation learning problem. We study the problem of temporal structural graph representation. We also provide a method for representation explainability.


2020 ◽  
Vol 34 (10) ◽  
pp. 13853-13854
Author(s):  
Jiacheng Li ◽  
Chunyuan Yuan ◽  
Wei Zhou ◽  
Jingli Wang ◽  
Songlin Hu

Social media has become a preferential place for sharing information. However, some users may create multiple accounts and manipulate them to deceive legitimate users. Most previous studies utilize verbal or behavior features based methods to solve this problem, but they are only designed for some particular platforms, leading to low universalness.In this paper, to support multiple platforms, we construct interaction tree for each account based on their social interactions which is common characteristic of social platforms. Then we propose a new method to calculate the social interaction entropy of each account and detect the accounts which are controlled by the same user. Experimental results on two real-world datasets show that the method has robust superiority over state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document