scholarly journals The Rationale for Monitoring Invasive Plant Populations as a Crucial Step for Management

2009 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Bruce D. Maxwell ◽  
Erik Lehnhoff ◽  
Lisa J. Rew

AbstractMany land managers are faced with trying to optimize management of invasive plant species based on budget constraints and lack of knowledge of the true potential of the species. Generally, “early detection rapid response” (EDRR) is the assumed best management strategy and tends to drive management regardless of the invasion stage or possible variation in the invasion potential of the population. We created a simulation model to evaluate the optimal management strategy to reduce the rate of invasion of nonindigenous plant species. The strategies were specifically chosen to assess the value of information from monitoring populations. We compared four management strategies and a no-management control over a 20-yr period in the context of a management area: (1) managing a fixed number of populations at random each year (EDRR random), (2) managing an equivalent number of populations along a road each year (EDRR road), (3) managing half of the fixed populations that were determined by monitoring to be sources of new populations (monitoring every year), and (4) managing an equivalent set of source populations only on even years, leaving the odd years for monitoring (monitoring every other year). EDRR random location without regard to population invasion potential, and monitoring every year targeting management on populations determined to be invasive (sources for new populations), were the most successful strategies for reducing the increase in total number of populations. The model simulations suggest that managers could dedicate 50% of their management time to monitoring without risk of accelerating invasions or reducing the impact of their weed management program.

2020 ◽  
Vol 11 (1) ◽  
pp. 5-15
Author(s):  
Т. I. Balanovska ◽  
◽  
V. V. Voskolupov ◽  

The article studies the role of marketing management in the activity of agricultural enterprises. The agricultural sector is one of the key sectors of the Ukrainian economy, the core component of which is agricultural production. The findings of the article show the fact that a significant number of agricultural enterprises are unprofitable, with their share in the total number of enterprises accounting for 13.3%. Their performance largely depends on the impact of the extremely complex, dynamic and uncertain environment. The article suggests that only the businesses possessing the ability of adequate adjustment to the environment with taking precautions against negative effects timely and using opportunities the fullest ensure their competitiveness and profitability of their activity in the long run. The article determines marketing management tools to be relevant for ensuring successful operation of agricultural enterprises under modern conditions, for there is a need to find new approaches to managing enterprise activities. The article reveals the essence of marketing management; offers the interpretations of the concepts of "marketing management" and "management of marketing" given by the Ukrainian scientists and foreign researchers; and studies the difference between them. The article suggests that marketing management is a broader concept than management of marketing due to the fact that it is management of all general and individual functions of enterprise, as well as all divisions of enterprise on the basis of marketing. Marketing management considers marketing and management inseparably - they also mutually penetrate and complement each other. The main goal of marketing management is to increase profitability of enterprise by achieving maximum customer satisfaction. Based on the generalization of different views of scientists, the main stages of a marketing management process at agricultural enterprise are identified and characterized, including analysis of internal and external environment, selection of target market segments, marketing strategy formation, marketing complex development, organizational structure construction, marketing management program formation and marketing management control and analysis. The process of marketing management at agricultural enterprise contains a number of specific procedures aimed at research and formation of the demand of target consumers and comprehensive satisfaction of their needs. The findings of the research prove that the use of marketing management tools will help ensure the market orientation of agricultural enterprise, which provides a focus on success, timely adaptation to the environment, gaining a leading position in the market, providing competitive advantage.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2411
Author(s):  
Hamada E. Ali ◽  
Solveig Franziska Bucher

Land-use changes have huge impacts on natural vegetation, especially megaprojects, as the vegetation layer is destroyed in the course of construction works affecting the plant community composition and functionality. This large-scale disturbance might be a gateway for the establishment of invasive plant species, which can outcompete the natural flora. In contrast, species occurring in the area before the construction are not able to re-establish. In this study, we analyzed the impact of a pipeline construction on a wetland nature reserve located in northern Egypt. Therefore, we analyzed the plant species occurrence and abundance and measured each plant species’ traits before the construction in 2017 as well as on multiple occasions up to 2 years after the construction had finished on altogether five sampling events. We found that the construction activity led to the establishment of an invasive species which previously did not occur in the area, namely, Imperata cylindrica, whereas five species (Ipomoea carnea, Pluchea dioscoridis, Polygonum equisetiforme, Tamarix nilotica, and Typha domingensis) could not re-establish after the disturbance. The functionality of ecosystems assessed via the analysis of plant functional traits (plant height, specific leaf area, and leaf dry matter content) changed within species over all sampling events and within the community showing a tendency to approximate pre-construction values. Functional dispersion and Rao’s quadratic diversity were higher after the megaproject than before. These findings are important to capture possible re-establishment and recovery of natural vegetation after construction and raise awareness to the impact of megaprojects, especially in areas which are high priority for conservation.


Author(s):  
Christopher N. Kaiser-Bunbury ◽  
◽  
Benno I. Simmons ◽  
◽  

Invasive plant species degrade and homogenize ecosystems worldwide, thereby altering ecosystem processes and function. To mitigate and reverse the impact of invasive plants on pollination, a key ecosystem function, conservation scientists and practitioners restore ecological communities and study the impact of such management interventions on plant-pollinator communities. Here, we describe opportunities and challenges associated with restoring pollination interactions as part of a holistic ecosystem-based restoration approach. We introduce a few general concepts in restoration ecology, and outline best planning and evaluation practices of restoring pollination interactions on the community level. Planning involves the selection of suitable plant species to support diverse pollinator communities, which includes considerations of the benefits and disadvantages of using native vs exotic, and bridge and framework plant species for restoration. We emphasize the central role of scientific- and community-level approaches for the planning phase of pollination restoration. For evaluation purposes, we argue that appropriate network indicators have the advantage of detecting changes in species behaviour with consequences for ecosystem processes and functions before these changes show up in altered species communities. Suitable network metrics may include interaction diversity and evenness, and network measures that describe the distribution of species, such as network and species-level specialization, modularity and motifs. Finally, we discuss the usefulness of the network approach in evaluating the benefits of restoration interventions for pollination interactions, and propose that applied network ecologists take a central role in transferring theory into practice.


HortScience ◽  
2014 ◽  
Vol 49 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Renee H. Harkins ◽  
Bernadine C. Strik ◽  
David R. Bryla

A study was conducted in western Oregon to assess the impact of cultivar and weed management strategy on accumulation and loss of plant biomass and nutrients during the first 3 years of establishment when using organic fertilizer. The study was conducted in trailing blackberry (Rubus L. subgenus Rubus Watson) planted in May 2010 and certified organic in May 2012. Treatments included two cultivars, Marion and Black Diamond, each with either no weed control after the first year after planting or with weeds managed by hand-weeding or the use of weed mat. Each treatment was amended with organically approved fertilizers at pre-plant and was drip-fertigated with fish emulsion each spring. Most primocane leaf nutrient concentrations were within the range recommended for blackberry. However, leaf nitrogen (N) was low in ‘Black Diamond’, especially when grown without weed control, whereas leaf boron (B) was low in all treatments. In many cases, leaf nutrient concentrations were affected by cultivar and weed management in both the primocanes and the floricanes. The concentration of several nutrients in the fruit differed between cultivars, including calcium (Ca), magnesium (Mg), sulfur (S), B, and zinc (Zn), but only fruit Ca was affected by weed management and only in ‘Marion’. In this case, fruit Ca was higher when the cultivar was grown with weed mat than with hand-weeding or no weeding. Total biomass production of primocanes increased from an average of 0.3 t·ha−1 dry weight (DW) during the first year after planting to 2.0 t·ha−1 DW the next year. Plants were first cropped the third year after planting and gained an additional 3.3 t·ha−1 DW in total aboveground biomass (primocanes, floricanes, and fruit) by the end of the third season. Fruit DW averaged 1.4 t·ha−1 in non-weeded plots, 1.9 t·ha−1 in hand-weeded plots, and 2.3 t·ha−1 in weed mat plots. Biomass of senesced floricanes (removed after harvest) averaged 3.2 t·ha−1 DW and was similar between cultivars and among the weed management treatments. ‘Marion’ primocanes accumulated a higher content of N, phosphorus (P), potassium (K), Mg, S, iron (Fe), B, copper (Cu), and aluminum (Al) than in ‘Black Diamond’. Weeds, however, reduced nutrient accumulation in the primocanes in both cultivars, and accumulation of nutrients was greater in the floricanes than in the previous year’s primocanes. Total nutrient content declined from June to August in the floricanes, primarily through fruit removal at harvest and senescence of the floricanes after harvest. Depending on the cultivar and weed management strategy, nutrient loss from the fruit and floricanes averaged 34 to 79 kg·ha−1 of N, 5 to 12 kg·ha−1 of P, 36 to 84 kg·ha−1 of K, 23 to 61 kg·ha−1 of Ca, 5 to 15 kg·ha−1 of Mg, 2 to 5 kg·ha−1 of S, 380 to 810 g·ha−1 of Fe, 70 to 300 g·ha−1 of B, 15 to 36 g·ha−1 of Cu, 610 to 1350 g·ha−1 of manganese (Mn), 10 to 260 g·ha−1 of Zn, and 410 to 950 g·ha−1 of Al. Overall, plants generally accumulated (and lost) the most biomass and nutrients with weed mat and the least with no weed control.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2141 ◽  
Author(s):  
John M. Boland

The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB,Euwallaceasp.), an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepisBenth. andS. gooddingiiC.R. Ball), and in the seven scrub units, I examined mule fat (Baccharis salicifolia(Ruiz & Pav.) Pers.). Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60%) in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70%) of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley,Ricinus communisL., Tamarix ramosissimaLedeb. andArundo donaxL., had low rates of infestation. Several findings from this study have significance for resource managers: (1) the KSHB attack caused extensive mortality of trees soon after being first discovered so, if managers are to control the spread of the beetle, they will need to develop an effective early detection and rapid response program; (2) infestation rates were highest in units that were wet, so resource managers trying to detect the beetle in other areas should thoroughly search trees near water, particularly nutrient-enriched water; (3) the infestation appears to be a novel form of disturbance, and the affected forests may need special management actions in order to recover; and (4) the infestation has altered the structure of the forest canopy, and this is likely to promote the growth of invasive plant species that were relatively inconspicuous in the forests prior to the beetle attack but will now need more attention.


EDIS ◽  
2006 ◽  
Vol 2006 (4) ◽  
Author(s):  
Kenneth A. Langeland

Land and water managers who apply herbicides to control invasive plant species and other nuisance vegetation strive to minimize environmental impacts as a matter of policy and daily operations. It is, therefore, not surprising that concern has been expressed and many questions asked relative to recent publications by Relyea (2005a, 2005b, 2005c), which implicate use of glyphosate-containing herbicides in global decline of amphibians. The purpose of this article is to put these recent publications in perspective relative to aquatic and terrestrial natural area weed management and explain why land managers should continue to use glyphosate-containing products to protect managed habitats from weeds without concern for unreasonable adverse environmental impacts. This document is SS-AGR-104, one of a series of the Agronomy Department, Center for Aquatic and Invasive Plants, UF/IFAS Extension. Original publication date February 2006.


Author(s):  
Angga Yudaputra ◽  
Izu Andry Fijridiyanto ◽  
Inggit Puji Astuti ◽  
Rizmoon Nurul Zulkarnaen ◽  
Ade Yuswandi ◽  
...  

Aims: This study aims to predict the future geographic distribution shift of invasive plant species Austroeupathorium inulifolium as the impact of global climate change. Study Design: The rising temperature and precipitation change lead to the geographic distribution shift of organisms. A. inulifolium belongs to invasive plant species that often causes a substantial economic loss and ecological degradation in the invaded areas. Modelling of species distribution using the climate-based model could be used to understand the geographic distribution shift of invasive species in the future scenario under global climate change. Place and Duration of Study: Center for Plant Conservation and Botanic Gardens – LIPI and 6 months. Methodology: The total 2228 of occurrence records were derived from the Global Biodiversity Information Facility (GBIF) database. The seven climatic variables were selected from 19 variables using a pairwise correlation test (vifcor) with a threshold >0.7. The ensemble model was used by combining Random Forest (RF) and Support Vector Machine (SVM). Results: Both two models are well-performed either using AUC or TSS evaluation methods. RF and SVM have AUC >0.95, and TSS >0.8. The predicted current distribution tends to have larger distribution areas compared to observed occurrence records. The predicted future distribution seems to be shifted in several parts of North America and Europe. Conclusion: The geographic distribution of invasive plant species A. inulifolium will be shifted to the Northern part of globe in 2090. Mean temperature of driest quarter and precipitation of warmest quarter are the two most important variables that determine the distribution pattern of the A. inulifolium. The predictive distribution pattern of invasive plant A. inulifolium would be important to provide information about the impact of climate change to the geographic distribution shift of this species.


2013 ◽  
Vol 24 (07) ◽  
pp. 1350042 ◽  
Author(s):  
JAMES T. MURPHY ◽  
MARK P. JOHNSON ◽  
RAY WALSHE

Invasive nonindigenous plant species can have potentially serious detrimental effects on local ecosystems and, as a result, costly control efforts often have to be put in place to protect habitats. An example of an invasive problem on a global scale involves the salt marsh grass species from the genus Spartina. The spread of Spartina anglica in Europe and Asia has drawn much concern due to its ability to convert coastal habitats into cord-grass monocultures and to alter the native food webs. However, the patterns of invasion of Spartina species are amenable to spatially-explicit modeling strategies that take into account both temporal and spatio-temporal processes. In this study, an agent-based model of Spartina growth on a simulated mud flat environment was developed in order to study the effects of spatial pattern and initial seedling placement on the invasion dynamics of the population. The spatial pattern of an invasion plays a key role in the rate of spread of the species and understanding this can lead to significant cost savings when designing efficient control strategies. We present here a model framework that can be used to explicitly represent complex spatial and temporal patterns of invasion in order to be able to predict quantitatively the impact of these factors on invasion dynamics. This would be a useful tool for assessing eradication strategies and choosing optimal control solutions in order to be able to minimize future control costs.


2013 ◽  
Vol 6 (1) ◽  
pp. 79-86 ◽  
Author(s):  
Kevyn J. Juneau ◽  
Catherine S. Tarasoff

AbstractCommon reed [Phragmites australis (Cav.) Trin. ex Steud.] is an invasive plant that reproduces poorly by seed but regenerates vigorously by rhizomes. Because Phragmites australis propagates well through rhizome growth, invasion often occurs from transported rhizome tissue. We investigated both rhizome-fragment biomass and seasonal effects on survival and growth of ramets. Rhizomes were collected along roadside ditches during the fall of 2009 and 2010 and during the summer of 2010 and 2011. Fall and summer were chosen because the plants were either dormant or actively growing, respectively. Rhizomes were cut into fragments then grown in a greenhouse for 60 d in vermiculite with no added nutrients. Rhizomes collected in the fall had a survival rate of 71.1%, whereas only 15.6% of those collected in the summer survived. Within season, rhizomes with low initial biomass had lower survival rates and growth than did large rhizomes. There was no seasonal difference in the total biomass produced by the surviving plants; however, allocation of biomass did differ. Summer-collected rhizomes showed a higher belowground to aboveground biomass ratio than did those collected in the fall. Understanding the viability of Phragmites australis rhizome fragments provides land managers a greater awareness of the high-establishment risks of Phragmites australis. This information should be included in an integrated weed management program, and actions should be taken to reduce the spread of this weed during roadside maintenance. Although the risk of survival is lower during the summer, soil contaminated with Phragmites australis should not be transported or must be sifted with a screen to ensure all rhizome fragments are removed.


Sign in / Sign up

Export Citation Format

Share Document