Response of Hybrid Bermudagrass (Cynodon dactylon× C.transvaalensis) to Three HPPD-Inhibitors

Weed Science ◽  
2011 ◽  
Vol 59 (4) ◽  
pp. 458-463 ◽  
Author(s):  
Matthew T. Elmore ◽  
James T. Brosnan ◽  
Dean A. Kopsell ◽  
Gregory K. Breeden ◽  
Thomas C. Mueller

Mesotrione, topramezone, and tembotrione inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD), an enzyme integral to carotenoid biosynthesis. Research was conducted to evaluate the response of hybrid bermudagrass following mesotrione (280, 350, and 420 g ai ha−1), topramezone (18, 25, and 38 g ai ha−1), and tembotrione (92, 184, and 276 g ai ha−1) applications. Measurements of visual bleaching (VB) and chlorophyll fluorescence yield (Fv/Fm) were evaluated 3, 5, 7, 14, 21, 28, and 35 d after application (DAA). Leaf tissues were sampled on the same dates and assayed for chlorophyll and carotenoid pigments using high-performance liquid chromatography (HPLC). Responses of plants treated with topramezone and tembotrione were similar; these herbicides caused more VB and greater reductions in Fv/Fm, total chlorophyll, lutein, and xanthophyll cycle pigment concentrations than mesotrione 5 to 21 DAA. Increasing mesotrione application rate did not increase VB or lead to greater reductions in total chlorophyll, lutein, or xanthophyll pigment concentrations. Alternatively, increasing topramezone and tembotrione application rates above 18 and 92 g ha−1, respectively, extended VB and pigment reductions. Of the three HPPD-inhibitors tested, topramezone was the most active, because the low (18 g ha−1) rate of topramezone reduced lutein and total xanthophyll pigment concentrations more than the low rate of tembotrione (92 g ha−1) during periods of maximum activity (14 to 21 DAA). No necrosis was observed with any of the treatments, suggesting tank mixtures of topramezone with other herbicides might be required to provide long-term control of hybrid bermudagrass.

HortScience ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 493-498 ◽  
Author(s):  
James T. Brosnan ◽  
Dean A. Kopsell ◽  
Matthew T. Elmore ◽  
Gregory K. Breeden ◽  
Gregory R. Armel

Mesotrione, topramezone, and tembotrione are inhibitors of the enzyme p-hydroxyphenylpyruvate dioxygenase (HPPD), which impacts the carotenoid biosynthetic pathway. An experiment was conducted to determine the effects of mesotrione, topramezone, and tembotrione on carotenoid pigment concentrations in common bermudagrass [Cynodon dactylon (L.) Pers.; cv. Riviera] leaf tissues. Bermudagrass plants were treated with three rates of mesotrione (0.28, 0.35, and 0.42 kg·ha−1), topramezone (0.018, 0.025, and 0.038 kg·ha−1), and tembotrione (0.092, 0.184, and 0.276 kg·ha−1). The lowest rate of each herbicide represented the maximum labeled use rate for a single application. Percent visual bleaching was measured at 3, 7, 14, 21, 28, and 35 days after application (DAA). Leaf tissues were sampled on the same dates and assayed for carotenoids. Topramezone and tembotrione bleached bermudagrass leaf tissues to a greater degree than mesotrione. Concomitantly, topramezone and tembotrione also reduced total chlorophyll (chlorophyll a + b), β-carotene, lutein, and total xanthophyll cycle pigment concentrations (zeaxanthin + antheraxanthin + violaxanthin) more than mesotrione. Increases in visual bleaching resulting from application rate were accompanied by linear reductions in lutein, β-carotene, and violaxanthin for all herbicides. Topramezone and tembotrione increased the percentage of zeaxanthin + antheraxanthin in the total xanthophyll pigment pool (ZA/ZAV) 7 days after peak visual bleaching was observed at 14 DAA. Reductions in ZA/ZAV were reported after 21 DAA. This response indicates that sequential applications of topramezone and tembotrione should be applied on 14- to 21-day intervals, because stress induced by these herbicides is greatest at these timings. Increases in photoprotective xanthophyll cycle pigments (ZA/ZAV) at 14 to 21 DAA may be a mechanism allowing bermudagrass to recover from HPPD-inhibiting herbicide injury, because bermudagrass recovered from all treatments by 35 DAA. Data in the current study will allow turf managers to design physiologically validated bermudagrass control programs with HPPD-inhibiting herbicides. Chemical names: mesotrione [2-(4-methysulfonyl-2-nitrobenzoyl)-1,3-cyclohexanedione], tembotrione {2-[2-chloro-4-(methylsulfonyl)-3-[(2,2,2-(trifluoroethoxy)methyl]benzoyl]-1,3-cyclohexanedione}, topramezone {[3-(4,5-dihydro-3-isoxazolyl)-2-methyl-4-(methylsulfonyl)phenyl](5-hydroxy-1-nethyl-1H-pyrazol-4-yl)methanone}.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 830-835 ◽  
Author(s):  
Alan L. Wright ◽  
Tony L. Provin ◽  
Frank M. Hons ◽  
David A. Zuberer ◽  
Richard H. White

Application of organic amendments can increase dissolved organic C (DOC) concentrations, which may influence movement of nutrients and heavy metals in soils. The objectives of this study were to investigate the influence of compost sources and application rates on concentrations of soil DOC, NO3-N, and extractable P over 29 months after a one-time application of compost to bermudagrass [Cynodon dactylon (L.) Pers.] turf. Few differences were evident between compost sources for soil total organic C (TOC), DOC, and NO3-N. However, the initial P content of compost sources significantly influenced soil extractable P. Increasing the rate of compost application increased soil TOC initially, but levels remained fairly stable over time. In contrast, DOC continued to increase from 3 to 29 months after application, suggesting that compost mineralization and growth of bermudagrass contributed to DOC dynamics in soil. Dissolved organic C was 98%, 128%, 145%, 175%, and 179% greater 29 months after application of 0, 40, 80, 120, and 160 Mg compost/ha, respectively, than before application. Rate of compost application had less effect on DOC than TOC, as DOC concentrations appeared controlled in part by bermudagrass growth patterns. Soil NO3-N was generally unaffected by compost application rate, as NO3-N decreased similarly for unamended soil and all compost treatments. Soil extractable P initially increased after compost application, but increasing the application rate generally did not increase P from 3 to 29 months. Seasonal or cyclical patterns of TOC, DOC, and extractable P were observed, as significantly lower levels of these parameters were observed in dormant stages of bermudagrass growth during cooler months.


HortScience ◽  
2009 ◽  
Vol 44 (7) ◽  
pp. 2053-2057 ◽  
Author(s):  
Benjamin Wherley ◽  
Thomas R. Sinclair

Resolution of the effects of trinexapac-ethyl and nitrogen (N) application rate on evapotranspiration of low-cut, prostrate turfgrass species such as creeping bentgrass (Agrostis stolonifera L.) and hybrid bermudagrass [Cynodon dactylon (L.) Pers. × Cynodon transvaalensis Burtt-Davy] has not been explored. This study sought to examine the integrated growth and evapotranspiration responses of these two turfgrass species to two N rates and application of trinexapac-ethyl, a commonly used growth-regulating compound for suppressing turfgrass shoot growth. ‘Penncross’ creeping bentgrass and ‘Tifdwarf’ bermudagrass were studied. We hypothesized that application of trinexapac-ethyl and/or lower N application rates might result in lower rates of turfgrass evapotranspiration. Two greenhouse studies were conducted over 6-week periods in 2008. A completely randomized design was used to support a two species × two N rate × two trinexapac-ethyl rate factorial. Shoot and root growth and evapotranspiration were determined from the two grass species when maintained in well-watered conditions and grown in pots. The treatments were either a high N (1.2 g N/m2/week) or a low N (0.3 g N/m2/week) application and either 0 or 28 mg·m−2 a.i. trinexapac-ethyl. Application of trinexapac-ethyl and use of the low N rate each significantly reduced shoot growth in both species; however, neither factor caused a reduction in turfgrass water use. The high N rate promoted increased root growth in both species during the spring, but there was no effect of either factor on rooting during the summer study. These results indicate that although decreasing N application rates and applying trinexapac-ethyl effectively suppress shoot growth, neither is likely to have any impact on overall water requirements for these species when maintained in well-watered conditions.


2017 ◽  
Vol 27 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Matthew D. Jeffries ◽  
Travis W. Gannon ◽  
W. Casey Reynolds ◽  
Fred H. Yelverton ◽  
Charles A. Silcox

Turfgrass renovations commonly involve changing cultivars or species that are better suited for a given setting. Common bermudagrass [Cynodon dactylon (L.) Pers.] is a perennial turfgrass that is difficult to eradicate before renovations, and poses contaminant concerns for the subsequent stand. Dazomet is a granular soil fumigant that has activity on various pests, including common bermudagrass. Field research was conducted from 2015 to 2016 in Raleigh, NC and College Station, TX to evaluate dazomet treatments including various combinations of soil incorporation (irrigation- or tillage-incorporated) and sealing (tarp or no tarp) methods, application rates [291, 291 followed by (fb) 291, 468, or 583 kg·ha−1], and fluazifop-P [fluazifop (0.4 kg·ha−1)] + glyphosate (2.8 kg·ha−1 acid equivalent) application(s) for established common bermudagrass control. Overall, treatments required fluazifop + glyphosate before dazomet application for acceptable control (>90% cover reduction) at 42 and 46 weeks after initial treatment (WAIT) in Texas and North Carolina, respectively. Soil-incorporation results varied by location, with dazomet application (583 kg·ha−1) fb tillage resulting in ≥88% cover reduction across locations, while acceptable control from irrigation incorporation was only observed in North Carolina. Tarping did not improve efficacy when tillage incorporation at the maximum label application rate provided acceptable control, suggesting practitioners may eliminate this procedure. Information from this research will aid turfgrass managers in developing cost-effective, ecologically sound common bermudagrass eradication programs before renovations.


2021 ◽  
Author(s):  
Ruth M. Barajas ◽  
Vanessa Wong ◽  
Karen Little ◽  
Antonio F. Patti ◽  
Gil Garnier

Abstract Carboxylated nanocellulose superabsorbent polymers (SAP) can be used to increase soil water retention in agriculture. The benefits investigated are influenced by the superabsorbent structure, composition and application rate. In this study, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-oxidised nanocellulose superabsorbents were prepared using three different drying techniques: freeze-dried, and oven-dried at low and high temperatures. The swelling capacity in soil water extracts was measured and compared to deionised water. Soil was amended with different application rates of these superabsorbents to evaluate the effects on water retention, microbial community and their biodegradation. The absorption performance of nanocellulose superabsorbents is affected by the concentration and type of salts in the soil water extracts. Oven-dried at 50°C SAP presents the highest ionic sensitivity attributed to its large number of accessible carboxylate groups. The water retention of the soil treatments increases with increasing application rate. Soil treated with the freeze-dried superabsorbent shows the highest water retention, whereas those amended with the 50°C oven-dried SAP remain moist the longest. The biodegradation rate of these materials depends on the application rate and nutrient availability. Carboxylated nanocellulose superabsorbents emerge as high-performance biodegradable materials for agricultural use, able to replace the current non-biodegradable petrochemical-based superabsorbents.


HortScience ◽  
2010 ◽  
Vol 45 (10) ◽  
pp. 1559-1562 ◽  
Author(s):  
Dean A. Kopsell ◽  
James T. Brosnan ◽  
Gregory R. Armel ◽  
J. Scott McElroy

Mesotrione {2-[4-(methylsulfonyl)-2-nitrobensoyl]-1,3-cyclohexanedione} is a herbicide that indirectly inhibits phytoene desaturase in plant tissues, the first step in the carotenoid biosynthesis pathway. The predominant symptom of mesotrione activity is tissue whitening with subsequent plant necrosis. In the current study, ‘Riviera’ bermudagrass [Cynodon dactylon (L.) Pers.] was treated with mesotrione at 0.28 kg·ha−1 or untreated and sampled for tissue pigment concentrations at 0, 3, 7, 14, 21, 28, and 35 days after treatment (DAT). Visual tissue whitening in mesotrione-treated plants reached a maximum of 38% by 14 DAT; however, regreening of discolored tissue was observed by 21 DAT. Phytoene was only detected in mesotrione-treated plants at 3, 7, and 14 DAT. Pigments in treated plants decreased with initial tissue whitening; however, most recovered to untreated levels by 21 DAT. At 35 DAT, chlorophyll a, chlorophyll b, lutein, β-carotene, and zeaxanthin in mesotrione-treated plants had accumulated to levels exceeding untreated control plants. Results demonstrate that although mesotrione initially decreases bermudagrass pigment concentrations, treatment with this herbicide eventually results in higher concentrations of chlorophylls and carotenoids.


2020 ◽  
Vol 66 (No. 9) ◽  
pp. 468-476
Author(s):  
Miroslav Jursík ◽  
Martin Kočárek ◽  
Michaela Kolářová ◽  
Lukáš Tichý

Six sunflower herbicides were tested at two application rates (1N and 2N) on three locations (with different soil types) within three years (2015–2017). Efficacy of the tested herbicides on Chenopodium album increased with an increasing cation exchange capacity (CEC) of the soil. Efficacy of pendimethalin was 95%, flurochloridone and aclonifen 94%, dimethenamid-P 72%, pethoxamid 49% and S-metolachlor 47%. All tested herbicides injured sunflower on sandy soil (Regosol) which had the lowest CEC, especially in wet conditions (phytotoxicity 27% after 1N application rate). The highest phytotoxicity was recorded after the application of dimethenamid-P (19% at 1N and 45% at 2N application rate). Main symptoms of phytotoxicity were leaf deformations and necroses and the damage of growing tips, which led to destruction of some plants. Aclonifen, pethoxamid and S-metolachlor at 1N did not injure sunflower on the soil with the highest CEC (Chernozem) in any of the experimental years. Persistence of tested herbicides was significantly longer in Fluvisol (medium CEC) compared to Regosol and Chernozem. Dimethenamid-P showed the shortest persistence in Regosol and Chernozem. The majority of herbicides was detected in the soil layer 0–5 cm in all tested soils. Vertical transport of herbicides in soil was affected by the herbicide used, soil type and weather conditions. The highest vertical transport was recorded for dimethenamid-P and pethoxamid (4, resp. 6% of applied rate) in Regosol in the growing season with high precipitation.  


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1368
Author(s):  
Wenzheng Tang ◽  
Wene Wang ◽  
Dianyu Chen ◽  
Ningbo Cui ◽  
Haosheng Yang ◽  
...  

In order to meet the growing food demand of the global population and maintain sustainable soil fertility, there is an urgent need to optimize fertilizer application amount in agricultural production practices. Most of the existing studies on the optimal K rates for apple orchards were based on case studies and lack information on optimizing K-fertilizer management on a regional scale. Here, we used the method of combining meta-analysis with the K application rate-yield relationship model to quantify and summarize the optimal K rates of the Loess Plateau and Bohai Bay regions in China. We built a dataset based on 159 observations obtained from 18 peer-reviewed literature studies distributed in 15 different research sites and evaluated the regional-scale optimal K rates for apple production. The results showed that the linear plus platform model was more suitable for estimating the regional-scale optimal K rates, which were 208.33 and 176.61 kg K ha−1 for the Loess Plateau and Bohai Bay regions of China, respectively. Compared with high K application rates, the optimal K rates increased K use efficiency by 45.88–68.57%, with almost no yield losses. The optimal K rates also enhanced the yield by 6.30% compared with the low K application rates.


2018 ◽  
Vol 40 (3) ◽  
pp. 304-312 ◽  
Author(s):  
Lais Tessari Perboni ◽  
Dirceu Agostinetto ◽  
Leandro Vargas ◽  
Joanei Cechin ◽  
Renan Ricardo Zandoná ◽  
...  

Abstract: The goals of this study were to evaluate herbicide application rates at different timings for preharvest desiccation of wheat (Trial 1), as well as to evaluate the effect of the timing of herbicide desiccation at preharvest and harvest timing (Trial 2) on yield, germination, and herbicide residue in wheat seed. In Trial 1, treatments consisted of two application rates of glufosinate, glyphosate, paraquat, or paraquat+diuron and a control without application; application time periods were in the milk grain to early dough stage, soft dough to hard dough stage, and hard dough stage. In Trial 2, treatments consisted of different application time periods (milk grain to early dough stage, and soft dough to hard dough stage), different herbicides (glufosinate, 2,4-D+glyphosate, and untreated control), and different harvest times (5, 10 and 15 days after herbicide application). One thousand seeds weight, yield, first and final germination count, and herbicide residue on seeds were evaluated. Preharvest desiccation with paraquat, glufosinate, and 2,4-D+glyphosate at the milk grain to early dough stage reduces wheat yield. Regardless of the herbicide and application rate, application in the milk grain to early dough stage and soft dough to hard dough stage provides greater germination of wheat seeds, except at the lower dose of paraquat. Systemic herbicides accumulate more in wheat seeds.


Sign in / Sign up

Export Citation Format

Share Document