Seismic behavior of steel reinforced ECC columns under constant axial loading and reversed cyclic lateral loading

2016 ◽  
Vol 50 (1) ◽  
Author(s):  
Chang Wu ◽  
Zuanfeng Pan ◽  
R. K. L. Su ◽  
C. K. Y. Leung ◽  
Shaoping Meng
2020 ◽  
Vol 10 (12) ◽  
pp. 4056
Author(s):  
Yi Jia ◽  
Hexian Su ◽  
Zhengcong Lai ◽  
Yu Bai ◽  
Fuhai Li ◽  
...  

In the study, the moment–curvature relations of bridge piers constructed with polypropylene-fiber-reinforced engineered cementitious composite (PP-ECC) and reinforced concrete (RC) at the potential plastic hinge regions were performed experimentally. The bridge pier specimens were subjected to a combination of constant axial vertical loading and reversed cyclic lateral loading. The test variables include the reinforcement stirrup ratio, axial compression ratio, and height of the PP-ECC regions. Strain gauges were installed at the plastic hinge regions to determine the curvature. PP-ECC and RC bridge piers presented similar shapes of moment–curvature hysteretic curve. Regardless of the concrete type for the pier, the maximum moment and curvature were located near the bottom of the pier, which was consistent with the observed failure patterns. As greater peak moments and larger areas of hysteretic curves were observed for PP-ECC piers, this indicated that the use of PP-ECC at the potential plastic hinge regions significantly improved the deformation capacity and damage tolerance of bridge piers. Regarding the design variables, it was found that the axial loading ratio has a negative effect on enhancing the rotation capacity and plastic deformability, while the height of the PP-ECC portion and the amount of reinforcement stirrups displayed the opposite trend. Moreover, the contribution of stirrups in PP-ECC piers was more significant than that of RC ones.


2014 ◽  
Vol 638-640 ◽  
pp. 1923-1927
Author(s):  
Nan Li ◽  
Ya Jun Xi

A new type of joint between Concrete-filled Square Steel Tube columns and steel beam is proposed in this paper, and the seismic behavior of this type of joint under low-reversed cyclic loading experiment is researched. Ductility behavior, dissipation of seismic energy of this joint under horizontal, repeat load are analyzed. The experimental results showed that all specimens have good ductility and energy dissipation capacity. The story angle drift ductility ratios are μ=3.23~3.63, and the equivalent viscous damping coefficients are he=0.25~0.35,which meet the needs of the code for seismic design of building.


2017 ◽  
Vol 44 (5) ◽  
pp. 367-376 ◽  
Author(s):  
Nazli Azimikor ◽  
Svetlana Brzev ◽  
Kenneth J. Elwood ◽  
Donald L. Anderson ◽  
William McEwen

Results of a study performed on the out-of-plane instability of reinforced masonry shear walls (RMSW) under seismic loading are presented. The study was conducted to gain understanding of the out-of-plane instability mechanism and the key factors influencing its development through the testing of five reinforced masonry uniaxial specimens under reversed cyclic tension and compression. The specimens represented the end zone of a RMSW. The design parameters considered in the study included longitudinal reinforcement ratio and height-to-thickness ratio for the test specimens. It was found that onset of out-of-plane instability is strongly influenced by the level of tensile strains developed in the specimens, the reinforcement ratio, and the bar size. In this case, out-of-plane instability occurred when out-of-plane displacements exceeded the critical value equal to half the wall thickness. A study on full-scale RMSW specimens subjected to reversed cyclic loading, also undertaken under this research program, is expected to verify the findings of this study and contribute towards development of design criteria for out-of-plane stability of RMSW.


2012 ◽  
Vol 446-449 ◽  
pp. 2305-2308
Author(s):  
Guang Qiang Zhou ◽  
Qing Yang Liu ◽  
De Yuan Zhou

Based on the experiment of four models of reduced scale high-rise reinforced concrete wall under low-reversed cyclic loading, seismic behavior of reinforced concrete (RC) shear wall with diagonal web reinforcement under different ratio of axial compression is studied, in comparison to ordinary shear wall. The experiment result shows that diagonal bars affect the distribution of cracks and help to resist shear slip at the bottom of the wall. Seismic behavior of high-rise shear wall, which horizontal bars are replaced with the same amount diagonal bars in part can be obviously improved when the ratio of axial compression is high, but when the ratio of axial compression is low, the effect is not obvious.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Xinlei Yang ◽  
Hailiang Wang

Rammed earth (RE) constructions are widespread in underdeveloped rural areas in developing countries. However, these RE constructions are often susceptible to earthquake damage due to their poor seismic performance. Precast concrete tie columns and ring beam (tie bars) were proposed to improve the seismic behavior of RE constructions. Four RE walls, including a traditional RE wall and three RE walls with precast concrete tie columns and ring beam (tie bars), were tested under reversed cyclic loading, and the seismic behavior of these tested specimens was evaluated in terms of failure pattern, energy dissipation, displacement ductility, and stiffness degradation. The results showed that a significant increase of the load-bearing and deformation capacity could be achieved with the application of precast concrete tie columns in combination with RE. The load-bearing capacity and deformation capacity of traditional RE wall were increased by an average of 113% and 417%, respectively. These test results could provide reference to the design and construction of the environmental-friendly structures in rural areas.


1996 ◽  
Vol 12 (2) ◽  
pp. 185-198 ◽  
Author(s):  
Attila Beres ◽  
Stephen P. Pessiki ◽  
Richard N. White ◽  
Peter Gergely

This paper summarizes recent experimental research at Cornell University conducted on the behavior of gravity load designed reinforced concrete building frame components subjected to reversing cyclic loads (simulated seismic effects). Reinforced concrete framing systems, designed primarily for gravity loads, with little or no attention given to lateral load effects, are typically characterized by non-ductile reinforcing details in the joint regions and in the members. The seismic response of connection regions for gravity load design (GLD) frames has received relatively little attention in earlier studies, thus making it difficult to reliably evaluate GLD frames and to properly plan repair or retrofit strategies. Thirty-four full scale bare interior and exterior beam-to-column joints have been tested under reversed cyclic bending to identify the different damage mechanisms and to study the effect of critical details on strength and deformations. The discussion of test results focuses on the definition of joint shear strength factors for GLD frames to complement those provided by ACI-ASCE Committee 352 for frames designed with better details.


2019 ◽  
Vol 258 ◽  
pp. 05009
Author(s):  
Maidiawati ◽  
Jafril Tanjung ◽  
Yulia Hayatfi ◽  
Hamdeni Medriosa

This paper will describe the seismic behaviour of masonry infilled RC frame with a central opening structure under reversed cyclic lateral loading. To achieve the purpose of this study, four 1/4-scale single story and single bay RC frame specimens were tested, i.e. one bare frame, one clay brick masonry infilled RC frame without opening and two clay brick masonry infills with a central opening in infills. The ratios of opening size to panel area were 25% and 40%. Through reversed cyclic lateral loading tests, the seismic performance of RC frames with a central opening brick masonry infills was investigated. As the results, significant distinctions of failure mechanism, lateral strength, stiffness, and ductility were observed between these specimens. In the case of infills with a central opening, the cracks sprouted and developed at the corners of the opening. Although the presence of the opening in infill reduces the lateral strength and stiffness overall structure, the brick infilled frames with a central opening of 25% and 40% of panel area show better seismic performance as compared to the bare frame.


Sign in / Sign up

Export Citation Format

Share Document