Super-resolution optical microscope: principle, instrumentation, and application

2019 ◽  
Vol 20 (5) ◽  
pp. 608-630
Author(s):  
Bao-kai Wang ◽  
Martina Barbiero ◽  
Qi-ming Zhang ◽  
Min Gu
2020 ◽  
Vol 43 (8) ◽  
pp. 385-455
Author(s):  
A. Diaspro ◽  
P. Bianchini

Abstract This article deals with the developments of optical microscopy towards nanoscopy. Basic concepts of the methods implemented to obtain spatial super-resolution are described, along with concepts related to the study of biological systems at the molecular level. Fluorescence as a mechanism of contrast and spatial resolution will be the starting point to developing a multi-messenger optical microscope tunable down to the nanoscale in living systems. Moreover, the integration of optical nanoscopy with scanning probe microscopy and the charming possibility of using artificial intelligence approaches will be shortly outlined.


Author(s):  
Chiyu Morita ◽  
Yuriko Masuda ◽  
Yasunori Nawa ◽  
Aki Miyake ◽  
Wataru Inami ◽  
...  

2014 ◽  
Vol 02 (02) ◽  
pp. 1440010
Author(s):  
QIAN WANG ◽  
SHIBIAO WEI ◽  
GUANGHUI YUAN ◽  
XIAO-CONG YUAN

In this paper, we report the observation of surface plasmon virtual probes in water by using near-field scanning optical microscope. The full-width half-maximum of the probe is as small as λ0/5.5. Such deep-subwavelength sized plasmonic virtual probe may lead to many potential applications, such as super-resolution fluorescence optical imaging and optical manipulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ruo-Peng Zheng ◽  
Shu-Bin Liu ◽  
Lei Li

Due to the limitation of numerical aperture (NA) in a microscope, it is very difficult to obtain a clear image of the specimen with a large depth of field (DOF). We propose a deep learning network model to simultaneously improve the imaging resolution and DOF of optical microscopes. The proposed M-Deblurgan consists of three parts: (i) a deblurring module equipped with an encoder-decoder network for feature extraction, (ii) an optimal approximation module to reduce the error propagation between the two tasks, and (iii) an SR module to super-resolve the image from the output of the optimal approximation module. The experimental results show that the proposed network model reaches the optimal result. The peak signal-to-noise ratio (PSNR) of the method can reach 37.5326, and the structural similarity (SSIM) can reach 0.9551 in the experimental dataset. The method can also be used in other potential applications, such as microscopes, mobile cameras, and telescopes.


2015 ◽  
Vol 57 ◽  
pp. 69-80 ◽  
Author(s):  
Christian Eggeling

Plasma membrane dynamics are an important ruler of cellular activity, particularly through the interaction and diffusion dynamics of membrane-embedded proteins and lipids. FCS (fluorescence correlation spectroscopy) on an optical (confocal) microscope is a popular tool for investigating such dynamics. Unfortunately, its full applicability is constrained by the limited spatial resolution of a conventional optical microscope. The present chapter depicts the combination of optical super-resolution STED (stimulated emission depletion) microscopy with FCS, and why it is an important tool for investigating molecular membrane dynamics in living cells. Compared with conventional FCS, the STED-FCS approach demonstrates an improved possibility to distinguish free from anomalous molecular diffusion, and thus to give new insights into lipid–protein interactions and the traditional lipid ‘raft’ theory.


2004 ◽  
Vol 33 (1) ◽  
pp. 29-35
Author(s):  
Anjali Sarmah Goswami ◽  
Gazi Ameen Ahmed ◽  
Amarjyoti Choudhury

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andrey Alexandrov ◽  
Takashi Asada ◽  
Giovanni De Lellis ◽  
Antonia Di Crescenzo ◽  
Valerio Gentile ◽  
...  

Abstract We have designed a fully automated optical microscope running at high-speed and achieving a very high spatial resolution. In order to overcome the resolution limit of optical microscopes, it exploits the localized surface plasmon resonance phenomenon. The customized setup using a polarization analyzer, based on liquid crystals, produces no vibrations and it is capable of probing isolated nanoparticles. We tested its performance with an automated readout using a fine-grained nuclear emulsion sample exposed to 60 keV carbon ion beam and, for the first time, successfully reconstructed the directional information from ultra-short tracks produced by such low-energetic ions using a solid-state tracking detector.


Nano Letters ◽  
2021 ◽  
Author(s):  
Guang Yang ◽  
Chi Yang ◽  
Yage Chen ◽  
Boyu Yu ◽  
Yali Bi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document