Direct Imaging of Integrated Circuits in CPU with 60 nm Super-Resolution Optical Microscope

Nano Letters ◽  
2021 ◽  
Author(s):  
Guang Yang ◽  
Chi Yang ◽  
Yage Chen ◽  
Boyu Yu ◽  
Yali Bi ◽  
...  
2018 ◽  
Author(s):  
Pallabi Ghosh ◽  
Domenic Forte ◽  
Damon L. Woodard ◽  
Rajat Subhra Chakraborty

Abstract Counterfeit electronics constitute a fast-growing threat to global supply chains as well as national security. With rapid globalization, the supply chain is growing more and more complex with components coming from a diverse set of suppliers. Counterfeiters are taking advantage of this complexity and replacing original parts with fake ones. Moreover, counterfeit integrated circuits (ICs) may contain circuit modifications that cause security breaches. Out of all types of counterfeit ICs, recycled and remarked ICs are the most common. Over the past few years, a plethora of counterfeit IC detection methods have been created; however, most of these methods are manual and require highly-skilled subject matter experts (SME). In this paper, an automated bent and corroded pin detection methodology using image processing is proposed to identify recycled ICs. Here, depth map of images acquired using an optical microscope are used to detect bent pins, and segmented side view pin images are used to detect corroded pins.


2020 ◽  
Vol 43 (8) ◽  
pp. 385-455
Author(s):  
A. Diaspro ◽  
P. Bianchini

Abstract This article deals with the developments of optical microscopy towards nanoscopy. Basic concepts of the methods implemented to obtain spatial super-resolution are described, along with concepts related to the study of biological systems at the molecular level. Fluorescence as a mechanism of contrast and spatial resolution will be the starting point to developing a multi-messenger optical microscope tunable down to the nanoscale in living systems. Moreover, the integration of optical nanoscopy with scanning probe microscopy and the charming possibility of using artificial intelligence approaches will be shortly outlined.


2019 ◽  
Vol 20 (5) ◽  
pp. 608-630
Author(s):  
Bao-kai Wang ◽  
Martina Barbiero ◽  
Qi-ming Zhang ◽  
Min Gu

Author(s):  
Su Wang ◽  
S. W. Ricky Lee

There is an increasing demand for electronic devices with smaller sizes, higher performance and increased functionality. The development of vertical interconnects or through silicon vias (TSV) may be one of the most promising approaches to provide the three-dimensional (3D) integration of integrated circuits (IC). It is possible to improve the system’s performance with shorter RC delay, shorter signal paths and less power consumption. Electroplating process is one of the major contributors to the cost of TSV. Thus, plating time is one of our major concerns in TSV applications. About 80% of the TSVs are filled with copper due to its high conductivity and wide applications in multilayer wiring. Even though the electroplating of copper for interconnections is well established for the copper damascene micro-fabrication process, it has been shown that the filling of TSVs with copper plating is a different situation due to the much larger dimensions of TSVs. Generally the filling mechanism consists of conformal plating and bottom up plating. A 100% bottom up filling is preferred for copper filling in TSV. A seam may exist in via if the majority of filling mechanism is conformal plating. Thus, the bottom up filling profile is one the critical points to achieve void free filling. In this study, the void free copper filling TSVs with diameter from 10–30 m and depth from 50–150 m will be investigated by copper electroplating. A near 100% bottom up plating formula was developed in order to achieve void free and seam free filling. Filling performance of this plating formula was evaluated by examining vertical cross-sections and top-down cross-section of the filled TSVs using optical microscope and X-ray method. Pretreatment process and relationship with diffusion time will be also studied with respect to the TSV plating process. The effect of concentration of copper, acid and additives will be optimized to achieve the desired bottom up plating process. The ultimate goal is to achieve TSV plating with shorter plating time and better consistency. Electroplating experiment was conducted with an industrial electroplating tool. Successful plating results are demonstrated with optimized plating bath and plating mechanism. The void free and seam free copper deposition results are shown with minimized overburden. The time taken for the plating process is also greatly reduced with this near 100% bottom up plating formula. The benefits of this novel plating mechanism will be discussed in detail in this paper.


Author(s):  
Chiyu Morita ◽  
Yuriko Masuda ◽  
Yasunori Nawa ◽  
Aki Miyake ◽  
Wataru Inami ◽  
...  

Author(s):  
Danilo Golijanin

Emission of visible light from forward and reverse biased silicon p-n junctions due to the radiative electron-hole recombination has been known since the mid-50s. The weak light emission was also seen from a silicon-dioxide dielectric in an integrated gate oxide capacitor formed between a polysilicon gate and an (n or p) well in an integrated circuit. The difference in carrier energies for each of these recombination mechanisms gives rise to a specific photon wavelength (energy) distribution in the visible range. All photoemitting events are characterized by a very low level light intensity due to the low quantum efficiency of about 10−5 - 10−4 photons per one electron-hole recombination.The first practical photoemission microscope was constructed by Khurana and Chiang. They took the advantage of the advances in night vision technology and used it for imaging the faint ("invisible") light coming from various silicon structures. A typical photoemission microscope consists of an x-y-z stage with the device holder, an optical microscope, a lightsensitive camera all set within a light-tight enclosure and a computer system for image acquisition and processing.


Author(s):  
Edward Keyes ◽  
Jason Abt

Abstract Historically, the extraction of circuitry from an integrated circuit was normally within the abilities of the average FA laboratory and could be accomplished with little more than an optical microscope and film camera. Dramatic increases in the level of integration and number of metal interconnect levels coupled with shrinking feature sizes have rendered these techniques obsolete. This paper describes techniques and methods for the fast, semi-automated extraction of detailed circuit schematics from modern, nanometer scale integrated circuits.


2014 ◽  
Vol 02 (02) ◽  
pp. 1440010
Author(s):  
QIAN WANG ◽  
SHIBIAO WEI ◽  
GUANGHUI YUAN ◽  
XIAO-CONG YUAN

In this paper, we report the observation of surface plasmon virtual probes in water by using near-field scanning optical microscope. The full-width half-maximum of the probe is as small as λ0/5.5. Such deep-subwavelength sized plasmonic virtual probe may lead to many potential applications, such as super-resolution fluorescence optical imaging and optical manipulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ruo-Peng Zheng ◽  
Shu-Bin Liu ◽  
Lei Li

Due to the limitation of numerical aperture (NA) in a microscope, it is very difficult to obtain a clear image of the specimen with a large depth of field (DOF). We propose a deep learning network model to simultaneously improve the imaging resolution and DOF of optical microscopes. The proposed M-Deblurgan consists of three parts: (i) a deblurring module equipped with an encoder-decoder network for feature extraction, (ii) an optimal approximation module to reduce the error propagation between the two tasks, and (iii) an SR module to super-resolve the image from the output of the optimal approximation module. The experimental results show that the proposed network model reaches the optimal result. The peak signal-to-noise ratio (PSNR) of the method can reach 37.5326, and the structural similarity (SSIM) can reach 0.9551 in the experimental dataset. The method can also be used in other potential applications, such as microscopes, mobile cameras, and telescopes.


Sign in / Sign up

Export Citation Format

Share Document