scholarly journals Proinsulin processing in the diabetic Goto-Kakizaki rat

2002 ◽  
Vol 175 (3) ◽  
pp. 637-647 ◽  
Author(s):  
PC Guest ◽  
SM Abdel-Halim ◽  
DJ Gross ◽  
A Clark ◽  
V Poitout ◽  
...  

The biosynthesis and processing of proinsulin was investigated in the diabetic Goto-Kakizaki (GK) rat. Immunofluorescence microscopy comparing GK and Wistar control rat pancreata revealed marked changes in the distribution of alpha-cells and pronounced beta-cell heterogeneity in the expression patterns of insulin, prohormone convertases PC1, PC2, carboxypeptidase E (CPE) and the PC-binding proteins 7B2 and ProSAAS. Western blot analyses of isolated islets revealed little difference in PC1 and CPE expression but PC2 immunoreactivity was markedly lower in the GK islets. The processing of the PC2-dependent substrate chromogranin A was reduced as evidenced by the appearance of intermediates. No differences were seen in the biosynthesis and post-translational modification of PC1, PC2 or CPE following incubation of islets in 16.7 mM glucose, but incubation in 3.3 mM glucose resulted in decreased PC2 biosynthesis in the GK islets. The rates of biosynthesis, processing and secretion of newly synthesized (pro)insulin were comparable. Circulating insulin immunoreactivity in both Wistar and GK rats was predominantly insulin 1 and 2 in the expected ratios with no (pro)insulin evident. Thus, the marked changes in islet morphology and PC2 expression did not impact the rate or extent of proinsulin processing either in vitro or in vivo in this experimental model.

Parasitology ◽  
1993 ◽  
Vol 106 (3) ◽  
pp. 223-232 ◽  
Author(s):  
M. Read ◽  
T. Sherwin ◽  
S. P. Holloway ◽  
K. Gull ◽  
J. E. Hyde

SUMMARYWe describe a novel procedure for the immunofluorescent investigation of Plasmodium falciparum. This has allowed us to visualize clearly microtubular structures and their changing conformation through the erythrocytic cell-cycle, to the stage of cytodifferentiation leading to merozoite release. The images of spindle development we observed, together with an analysis of nuclear body numbers in large numbers of parasites, indicate that there is an apparent asynchrony in chromosomal multiplication within a single parasite. Using antibodies specific for post-translational modification of α- tubulin, we also demonstrate that the C-terminal tyrosine-containing epitope of P. falciparum α-tubulin I is similar to that of other organisms. Lysine-40 in the same molecule, a target for highly specific in vivo acetylation in some organisms, is unmodified in the blood stages we examined here. After in vitro acetylation of this residue, however, the epitope to which it contributes was recognized by antibody, showing that the conformation of this part of the molecule is also conserved, despite a lack of primary sequence homology immediately downstream of the target lysine residue.


2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 776
Author(s):  
Shipra Kumari ◽  
Bashistha Kumar Kanth ◽  
Ju young Ahn ◽  
Jong Hwa Kim ◽  
Geung-Joo Lee

Genome-wide transcriptome analysis using RNA-Seq of Lilium longiflorum revealed valuable genes responding to biotic stresses. WRKY transcription factors are regulatory proteins playing essential roles in defense processes under environmental stresses, causing considerable losses in flower quality and production. Thirty-eight WRKY genes were identified from the transcriptomic profile from lily genotypes, exhibiting leaf blight caused by Botrytis elliptica. Lily WRKYs have a highly conserved motif, WRKYGQK, with a common variant, WRKYGKK. Phylogeny of LlWRKYs with homologous genes from other representative plant species classified them into three groups- I, II, and III consisting of seven, 22, and nine genes, respectively. Base on functional annotation, 22 LlWRKY genes were associated with biotic stress, nine with abiotic stress, and seven with others. Sixteen unique LlWRKY were studied to investigate responses to stress conditions using gene expression under biotic and abiotic stress treatments. Five genes—LlWRKY3, LlWRKY4, LlWRKY5, LlWRKY10, and LlWRKY12—were substantially upregulated, proving to be biotic stress-responsive genes in vivo and in vitro conditions. Moreover, the expression patterns of LlWRKY genes varied in response to drought, heat, cold, and different developmental stages or tissues. Overall, our study provides structural and molecular insights into LlWRKY genes for use in the genetic engineering in Lilium against Botrytis disease.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Junjie Cen ◽  
Yanping Liang ◽  
Yong Huang ◽  
Yihui Pan ◽  
Guannan Shu ◽  
...  

Abstract Background There is increasing evidence that circular RNAs (circRNAs) have significant regulatory roles in cancer development and progression; however, the expression patterns and biological functions of circRNAs in renal cell carcinoma (RCC) remain largely elusive. Method Bioinformatics methods were applied to screen for circRNAs differentially expressed in RCC. Analysis of online circRNAs microarray datasets and our own patient cohort indicated that circSDHC (hsa_circ_0015004) had a potential oncogenic role in RCC. Subsequently, circSDHC expression was measured in RCC tissues and cell lines by qPCR assay, and the prognostic value of circSDHC evaluated. Further, a series of functional in vitro and in vivo experiments were conducted to assess the effects of circSDHC on RCC proliferation and metastasis. RNA pull-down assay, luciferase reporter and fluorescent in situ hybridization assays were used to confirm the interactions between circSDHC, miR-127-3p and its target genes. Results Clinically, high circSDHC expression was correlated with advanced TNM stage and poor survival in patients with RCC. Further, circSDHC promoted tumor cell proliferation and invasion, both in vivo and in vitro. Analysis of the mechanism underlying the effects of circSDHC in RCC demonstrated that it binds competitively to miR-127-3p and prevents its suppression of a downstream gene, CDKN3, and the E2F1 pathway, thereby leading to RCC malignant progression. Furthermore, knockdown of circSDHC caused decreased CDKN3 expression and E2F1 pathway inhibition, which could be rescued by treatment with an miR-127-3p inhibitor. Conclusion Our data indicates, for the first time, an essential role for the circSDHC/miR-127-3p/CDKN3/E2F1 axis in RCC progression. Thus, circSDHC has potential to be a new therapeutic target in patients with RCC.


2004 ◽  
Vol 385 (1) ◽  
pp. 309-317 ◽  
Author(s):  
Zhefeng ZHAO ◽  
Joanna GRUSZCZYNSKA-BIEGALA ◽  
Anna ZOLKIEWSKA

The extracellular domain of integrin α7 is ADP-ribosylated by an arginine-specific ecto-ADP-ribosyltransferase after adding exogenous NAD+ to intact C2C12 skeletal muscle cells. The effect of ADP-ribosylation on the structure or function of integrin α7β1 has not been explored. In the present study, we show that ADP-ribosylation of integrin α7 takes place exclusively in differentiated myotubes and that this post-translational modification modulates the affinity of α7β1 dimer for its ligand, laminin. ADP-ribosylation in the 37-kDa ‘stalk’ region of α7 that takes place at micromolar NAD+ concentrations increases the binding of the α7β1 dimer to laminin. Increased in vitro binding of integrin α7β1 to laminin after ADP-ribosylation of the 37-kDa fragment of α7 requires the presence of Mn2+ and it is not observed in the presence of Mg2+. In contrast, ADP-ribosylation of the 63-kDa N-terminal region comprising the ligand-binding site of α7 that occurs at approx. 100 μM NAD+ inhibits the binding of integrin α7β1 to laminin. Furthermore, incubation of C2C12 myotubes with NAD+ increases the expression of an epitope on integrin β1 subunit recognized by monoclonal antibody 9EG7. We discuss our results based on the current models of integrin activation. We also hypothesize that ADP-ribosylation may represent a mechanism of regulation of integrin α7β1 function in myofibres in vivo when the continuity of the membrane is compromised and NAD+ is available as a substrate for ecto-ADP-ribosylation.


2004 ◽  
Vol 72 (1) ◽  
pp. 515-526 ◽  
Author(s):  
JoAnn M. Tufariello ◽  
William R. Jacobs, ◽  
John Chan

ABSTRACT Mycobacterium tuberculosis possesses five genes with significant homology to the resuscitation-promoting factor (Rpf) of Micrococcus luteus. The M. luteus Rpf is a secreted ∼16-kDa protein which restores active growth to cultures of M. luteus rendered dormant by prolonged incubation in stationary phase. More recently, the Rpf-like proteins of M. tuberculosis have been shown to stimulate the growth of extended-stationary-phase cultures of Mycobacterium bovis BCG. These data suggest that the Rpf proteins can influence the growth of mycobacteria; however, the studies do not demonstrate specific functions for the various members of this protein family, nor do they assess the function of M. tuberculosis Rpf homologues in vivo. To address these questions, we have disrupted each of the five rpf-like genes in M. tuberculosis Erdman, and analyzed the mutants for their growth in vitro and in vivo. In contrast to M. luteus, for which rpf is an essential gene, we find that all of the M. tuberculosis rpf deletion mutant strains are viable; in addition, all show growth kinetics similar to Erdman wild type both in vitro and in mouse organs following aerosol infection. Analysis of rpf expression in M. tuberculosis cultures from early log phase through late stationary phase indicates that expression of the rpf-like genes is growth phase-dependent, and that the expression patterns of the five M. tuberculosis rpf genes, while overlapping to various degrees, are not uniform. We also provide evidence that mycobacterial rpf genes are expressed in vivo in the lungs of mice acutely infected with virulent M. tuberculosis.


2019 ◽  
Author(s):  
Chenghua Luo ◽  
Dengyu Ji ◽  
Yan Li ◽  
Yan Cao ◽  
Shangyue Zhang ◽  
...  

ABSTRACTSp1 (Specificity protein 1)-CSE (cystathionine-γ-lyase)-H2S (hydrogen sulfide) pathway plays an important role in homocysteine-metabolism, whose disorder can result in hyperhomocysteinemia. The deficiency of plasma H2S in patients and animal models with hyperhomocysteinemia has been reported but it is unclear whether this deficiency plays a role in the progress of hyperhomocysteinemia. Furthermore, it remains unknown whether the post-translational modification of Sp1 or CSE mediated by hyperhomocysteinemia itself can in turn affect the development of hyperhomocysteinemia. By both in vivo and in vitro studies, we conducted immunoprecipitation and maleimide assays to detect the post-translational modification of Sp1-CSE-H2S pathway and revealed four major findings: (1) the accumulation of homocysteine augmented the nitration of CSE, thus blunted its bio-activity and caused H2S deficiency. (2) H2S deficiency lowered the S-sulfhydration of Sp1 and inhibited its transcriptional activity, resulted in lower expression of CSE. CSE deficiency decreased the H2S level further, which in turn lowered the S-sulfhydration level of CSE. (3) CSE was S-sulfhydrated at Cys84, Cys109, Cys172, Cys229, Cys252, Cys307 and Cys310 under physiological conditions, mutation of Cys84, Cys109, Cys229, Cys252 and Cys307 decreased its S-sulfhydration level and bio-activity. (4) H2S deficiency could trap hyperhomocysteinemia into a progressive vicious circle and trigger a rapid increase of homocysteine, while blocking nitration or restoring S-sulfhydration could break this circle. In conclusion, this study reveals a novel mechanism involved in the disorder of homocysteine-metabolism, which may provide a candidate therapeutic strategy for hyperhomocysteinemia.


2018 ◽  
Author(s):  
Avi Z. Rosenberg ◽  
Carrie Wright ◽  
Karen Fox-Talbot ◽  
Anandita Rajpurohit ◽  
Courtney Williams ◽  
...  

AbstractAccurate, RNA-seq based, microRNA (miRNA) expression estimates from primary cells have recently been described. However, this in vitro data is mainly obtained from cell culture, which is known to alter cell maturity/differentiation status, significantly changing miRNA levels. What is needed is a robust method to obtain in vivo miRNA expression values directly from cells. We introduce expression microdissection miRNA small RNA sequencing (xMD-miRNA-seq), a method to isolate cells directly from formalin fixed paraffin-embedded (FFPE) tissues. xMD-miRNA-seq is a low-cost, high-throughput, immunohistochemistry-based method to capture any cell type of interest. As a proof-of-concept, we isolated colon epithelial cells from two specimens and performed low-input small RNA-seq. We generated up to 600,000 miRNA reads from the samples. Isolated epithelial cells, had abundant epithelial-enriched miRNA expression (miR-192; miR-194; miR-200b; miR-200c; miR-215; miR-375) and overall similar miRNA expression patterns to other epithelial cell populations (colonic enteroids and flow-isolated colon epithelium). xMD-derived epithelial cells were generally not contaminated by other adjacent cells of the colon as noted by t-SNE analysis. xMD-miRNA-seq allows for simple, economical, and efficient identification of cell-specific miRNA expression estimates. Further development will enhance rapid identification of cell-specific miRNA expression estimates in health and disease for nearly any cell type using archival FFPE material.


2019 ◽  
Author(s):  
Robin A. Sorg ◽  
Clement Gallay ◽  
Jan-Willem Veening

AbstractStreptococcus pneumoniae can cause disease in various human tissues and organs, including the ear, the brain, the blood and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in S. pneumoniae. A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND and IMPLY gates. Finally, we demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of S. pneumoniae.


Development ◽  
2001 ◽  
Vol 128 (6) ◽  
pp. 895-906
Author(s):  
B. Knoll ◽  
K. Zarbalis ◽  
W. Wurst ◽  
U. Drescher

We have investigated the role of the Eph family of receptor tyrosine kinases and their ligands in the establishment of the vomeronasal projection in the mouse. Our data show intriguing differential expression patterns of ephrin-A5 on vomeronasal axons and of EphA6 in the accessory olfactory bulb (AOB), such that axons with high ligand concentration project onto regions of the AOB with high receptor concentration and vice versa. These data suggest a mechanism for development of this projection that is the opposite of the repellent interaction between Eph receptors and ligands observed in other systems. In support of this idea, when given the choice of whether to grow on lanes containing EphA-F(c)/laminin or F(c)/laminin protein (in the stripe assay), vomeronasal axons prefer to grow on EphA-F(c)/laminin. Analysis of ephrin-A5 mutant mice revealed a disturbance of the topographic targeting of vomeronasal axons to the AOB. In summary, these data, which are derived from in vitro and in vivo experiments, indicate an important role of the EphA family in setting up the vomeronasal projection.


Sign in / Sign up

Export Citation Format

Share Document