Precise grading of surrounding rock based on the numerical calculation of the jointed rock mass

Author(s):  
Dan Huang ◽  
Xiao-Qing Li ◽  
Wen-Chao Song

In this study, grading of surrounding rock was based on rock mass basic quality (BQ) values according to the specifications in China. Numerical approach was to construct synthetic rock mass (SRM) model to represent the jointed rock mass, and obtain the strength of the rock mass. It represented intact rock by the bonded particle model (BPM), and represent joint behaviour by the smooth joint model (SJM) to construct the discrete fracture network (DFN). In the Hongtuzhang Tunnel, the micro properties of granite cores with different weathered degrees were determined by the validation process, and the calculation representative elementary volume (REV) of surrounding rock was 15 m×15 m. Five slightly weathered, three slightly to moderately weathered, and two moderately weathered granite surrounding rock mass models were established based on the probability distribution of joint sets in each borehole, the conversion BQ value was acquired according by the calculated strength of rock mass model. It was discussed the differences of surrounding rock grades between the geological survey method and the numerical calculation method, and then found that the geological survey report is higher than the numerical calculation method predicted. And the numerical calculation is consistent with the actual excavation of rock mass at borehole A1388.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qian-Cheng Sun ◽  
Hao-Sen Guo ◽  
Zhi-Hua Xu ◽  
Yue Liu ◽  
Xiao Xu

It is very important to accurately determine the depth of excavation damaged zone for underground engineering excavation and surrounding rock stability evaluation, and it can be measured by acoustic test, but there is no quantitative method for analysis of the results, and it relies heavily on the experience of engineers, which leads to the low reliability of the results and also limits the application of the acoustic method. According to substantial field test data and the feedback of surrounding rock support parameters, the boundary method is proposed to determine the depth of excavation damaged zone in surrounding rock based on the relation between the ultrasonic velocity of measured point and the background wave velocity of rock mass. When the method is applied to the columnar jointed rock mass of Baihetan and the deep-buried hard rock of Jinping, the excavation damaged zone was well judged. The results in the Baihetan project show that the proposed method of determining excavation damage zone by the acoustic test can well demonstrate the anisotropy characteristics of the columnar jointed rock mass, and the damage evolution characteristics of jointed rock mass at the same position can also be obtained accurately. Moreover, the method also can accurately reveal the damage evolution process of the deep-buried hard rock under the condition of high ground stress, which proved the applicability of this method in jointed or nonjointed rock masses.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Min Gao ◽  
Shanpo Jia

Rock bolts, one of the main support structures of the tunnel, can improve the stress state and mechanical properties of the surrounding rocks. The rock bolts are simulated by bar or beam elements in present numerical calculations for most 2D tunnel models. However, the methods of simulating rock bolt in three-dimensional models are rarely studied. Moreover, there are too many rock bolts in the long-span tunnel, which are hardly applied in the 3D numerical model. Therefore, an equivalent anchoring method for bolted rock masses needs to be further investigated. First, the jointed material model is modified to simulate the anisotropic properties of surrounding rock masses. Then, based on the theoretical analysis of rock bolts in reinforcing mechanical properties of the surrounding rock masses, the equivalent anchoring method of the jointed rock mass tunnel is numerically studied. The equivalent anchoring method is applied to the stability analysis of a diversion tunnel in Western China. From the calculation results, it could be found that the reinforcement effect of rock bolts could be equivalently simulated by increasing the mechanical parameter value of surrounding rocks. For the jointed rock mass tunnel, the cohesion and internal friction angle of the surrounding rocks are improved as 1.7 times and 1.2 times of the initial value, which can simulate the reinforcement effect of rock bolts. Comparing with analytical results, the improved internal friction angle is nearly consistent with analytical result. The reinforcement effect of rock bolts is simulated obviously when the mechanical parameters of surrounding rocks are increased simultaneously. The engineering application shows that the equivalent anchoring method can reasonably simulate the effect of rock bolts, which can provide reference for stability analysis of three-dimensional tunnel simulations.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1138
Author(s):  
Xiao Huang ◽  
Huaining Ruan ◽  
Chong Shi ◽  
Yang Kong

Stress arching effect during the excavation of broken surrounding rock in underground engineering has an important influence on the stability of surrounding rock after underground excavation. To determine the stress arching effect in horizontally layered jointed rock mass, the stress arching characteristics of surrounding rock mass after excavation is analyzed in this study by using a series of numerical tests. The formation mechanism of stress arch is revealed through a comparison of the stress characteristics of a voussoir beam structure and theoretical analysis of multi-block mechanical relationship of jointed rock mass. The method for determining the boundaries of a stress arching zone is proposed, and the influence of various factors on a stress arch is further discussed. Results show that after the excavation of horizontally layered jointed rock mass, the stress arch bunch (SAB) is formed in the lower strata above the cavern, and the global stress arch (GSA) is formed in the higher strata, both of which are symmetrical arch stress patterns. The SAB is the mechanical manifestation of the voussoir beam structure formed by several low-level sandstone layers, and the GSA is caused by the uneven displacement between blocks. Compared with the GSA, the SAB is more sensitive to various influencing factors. The extent of stress arching zone decreases with the increase of an internal friction angle of the joint, lateral pressure coefficient, and overburden depth. In addition, the joint spacing of rock strata is conducive to the development of a stress arch. Results can provide technical support for deformation control and the stability analysis of broken surrounding rock in underground engineering.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Pei-tao Wang ◽  
Tian-hong Yang ◽  
Tao Xu ◽  
Qing-lei Yu ◽  
Hong-lei Liu

Joints often have important effects on seepage and elastic properties of jointed rock mass and therefore on the rock slope stability. In the present paper, a model for discrete jointed network is established using contact-free measurement technique and geometrical statistic method. A coupled mathematical model for characterizing anisotropic permeability tensor and stress tensor was presented and finally introduced to a finite element model. A case study of roadway stability at the Heishan Metal Mine in Hebei Province, China, was performed to investigate the influence of joints orientation on the anisotropic properties of seepage and elasticity of the surrounding rock mass around roadways in underground mining. In this work, the influence of the principal direction of the mechanical properties of the rock mass on associated stress field, seepage field, and damage zone of the surrounding rock mass was numerically studied. The numerical simulations indicate that flow velocity, water pressure, and stress field are greatly dependent on the principal direction of joint planes. It is found that the principal direction of joints is the most important factor controlling the failure mode of the surrounding rock mass around roadways.


Author(s):  
Diego Mas Ivars ◽  
Matthew E. Pierce ◽  
Caroline Darcel ◽  
Juan Reyes-Montes ◽  
David O. Potyondy ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2515 ◽  
Author(s):  
Eryu Wang ◽  
Guangbo Chen ◽  
Xiaojie Yang ◽  
Guofeng Zhang ◽  
Wenbin Guo

Aiming at the large deformation instability problem caused by the excavation unloading of a coal roadway in deep-buried slowly inclined jointed rock mass, the geomechanical parameters and deformation failure characteristics of an engineering geomechanical model were investigated. The in-situ stress state of the model was measured with the stress relief method. The geological and mechanical properties of roadway surrounding rock were described. The surrounding rock structure was revealed with the electron microscopy scanning method, micro-fractures and randomly distributed joints highly developed in roadway surrounding rock. Field investigation and monitoring indicated the cross-section of roadway surrounding rock shrank continuously and the deformation distribution was obviously asymmetric. Shotcrete spalling and cable broken failures frequently occurred in the middle and ride side of roof and right rib. Based on the geomechanical conditions of the coal roadway, a discrete element numerical model of coal roadway in gently inclined jointed rock mass was established. The parameters of rock mass in the numerical model were calibrated. The model ran in unsupported condition to restore the evolution process of stress, crack propagation and deformation in roadway surrounding rock due to gradual deviatoric stress release caused by excavation. On this basis, the space-time evolution characteristics and law of stress, crack propagation and deformation were obtained and then the asymmetric large fragmentation and dilatation deformation failure mechanism of roadway surrounding rock in deep-buried slowly inclined jointed rock mass was revealed. The failure reasons of the support structure were analyzed, and the relevant support principles were proposed. The research results can provide scientific references for the stability control of roadways excavated in jointed rock mass.


2021 ◽  
Vol 12 (1) ◽  
pp. 253
Author(s):  
Jianjun Zhang ◽  
Yang Wang ◽  
Baicong Yao ◽  
Dongxu Chen ◽  
Chuang Sun ◽  
...  

To control the large deformation that occurs in deep shaft-surrounding rock, the post-peak strain-softening characteristics of deep jointed rock mass are discussed in detail. An equivalent post-peak strain-softening model of jointed rock mass is established based on continuum theory and the geological strength index surrounding rock grading system, and numerical simulations are performed using FLAC3D software. The convergence-constraint method is used to analyze the rock support structure interaction mechanism. A composiste support technique is proposed in combination with actual field breakage conditions. During the initial support stage, high-strength anchors are used to release the rock stress, and high-stiffness secondary support is provided by well rings and poured concrete. This support technology is applied in the accessory well of a coal mine in Niaoshan, Heilongjiang, China. The stability of the surrounding rock support structure is calculated and analyzed by comparing the ideal elastic-plastic model and equivalent jointed rock mass strain-softening model. The results show that a support structure designed based on the ideal elastic-plastic model cannot meet the stability requirements of the surrounding rock and that radial deformation of the surrounding rock reaches 300 mm. The support structure designed based on the equivalent joint strain-softening model has a convergence rate of surrounding rock deformation of less than 1 mm/d after 35 days of application. The surrounding rock deformation is finally controlled at 140 mm, indicating successful application of the support technology.


2004 ◽  
Vol 261-263 ◽  
pp. 1551-1556
Author(s):  
S.C. Li ◽  
Wei Zhong Chen ◽  
Wei Shen Zhu ◽  
X.B. Qiu ◽  
Chien Hsin Yang

This present paper adopts a constitutive model for elastic damage of intermittently jointed rock mass, damage-evolution equations and a supporting model of damaged rock-bolt bar(DRBB) element to simulate effect of reinforcement. The results have indicated that the above method well describes the progressive failure process of the surrounding rock mass and the anchorage effect. The theoretical achievements are of referential value to designers.


Sign in / Sign up

Export Citation Format

Share Document