scholarly journals L-arginine suppresses lipopolysaccharide-induced expression of RANTES in glomeruli.

1998 ◽  
Vol 9 (2) ◽  
pp. 203-210 ◽  
Author(s):  
U Haberstroh ◽  
K Stilo ◽  
J Pocock ◽  
G Wolf ◽  
U Helmchen ◽  
...  

Endotoxemia leads to the infiltration of inflammatory cells in glomeruli and the tubulointerstitium of the kidney. The ultimate mechanisms for this infiltration, however, are not entirely clear. In this study, the glomerular formation of the chemokine RANTES (regulated upon activation normal T cell expressed and secreted) was examined in an in vivo model of endotoxemia to evaluate the role the local release of chemokines might play in the regulation of this inflammatory cell infiltrate. Since the beneficial effects of nitric oxide (NO) on immune-mediated tissue injury have been reported, we also examined possible interactions between the chemokine RANTES and the L-arginine/NO pathway. To induce endotoxemia, rats were injected intraperitoneally with lipopolysaccharide (LPS). Glomeruli were isolated over a 24-h time period, and RANTES was assessed by Northern blotting, a chemotactic assay, and a specific enzyme-linked immunosorbent assay. The chemokine release was associated with increased glomerular infiltration of monocytes/macrophages. LPS also stimulated the mRNA expression of inducible NO synthase and increased the release of nitrite into the supernatants of isolated glomeruli. Supplementation of L-arginine intake increased the release of glomerular nitrite and reduced glomerular RANTES expression after the injection of LPS. Inhibition of the L-arginine/NO pathway by the unspecific NO synthase inhibitor N(G)-nitro-L-arginine methylester significantly increased glomerular RANTES mRNA expression and the number of infiltrating glomerular macrophages. These data demonstrate that L-arginine suppresses glomerular RANTES formation and suggest that the chemokine-mediated recruitment of glomerular macrophages in LPS-induced endotoxemia can be modulated by the L-arginine/NO pathway.

2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1536 ◽  
Author(s):  
Pietro Antonuccio ◽  
Antonio Micali ◽  
Domenico Puzzolo ◽  
Carmelo Romeo ◽  
Giovanna Vermiglio ◽  
...  

Varicocele is one of the main causes of infertility in men. Oxidative stress and consequently apoptosis activation contribute to varicocele pathogenesis, worsening its prognosis. Natural products, such as lycopene, showed antioxidant and anti-inflammatory effects in several experimental models, also in testes. In this study we investigated lycopene effects in an experimental model of varicocele. Male rats (n = 14) underwent sham operations and were administered with vehicle (n = 7) or with lycopene (n = 7; 1 mg/kg i.p., daily). Another group of animals (n = 14) underwent surgical varicocele. After 28 days, the sham and 7 varicocele animals were euthanized, and both operated and contralateral testes were weighted and processed. The remaining rats were treated with lycopene (1 mg/kg i.p., daily) for 30 days. Varicocele rats showed reduced testosterone levels, testes weight, Bcl-2 mRNA expression, changes in testes structure and increased malondialdehyde levels and BAX gene expression. TUNEL (Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling) assay showed an increased number of apoptotic cells. Treatment with lycopene significantly increased testosterone levels, testes weight, and Bcl-2 mRNA expression, improved tubular structure and decreased malondialdehyde levels, BAX mRNA expression and TUNEL-positive cells. The present results show that lycopene exerts beneficial effects in testes, and suggest that supplementation with the tomato-derived carotenoid might be considered a novel nutraceutical strategy for the treatment of varicocele and male infertility.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiangbing Mao ◽  
Rui Sun ◽  
Qingxiang Wang ◽  
Daiwen Chen ◽  
Bing Yu ◽  
...  

Inflammatory bowel disease (namely, colitis) severely impairs human health. Isoleucine is reported to regulate immune function (such as the production of immunoreactive substances). The aim of this study was to investigate whether l-isoleucine administration might alleviate dextran sulfate sodium (DSS)-induced colitis in rats. In the in vitro trial, IEC-18 cells were treated by 4 mmol/L l-isoleucine for 12 h, which relieved the decrease of cell viability that was induced by TNF-α (10 ng/ml) challenge for 24 h (P &lt;0.05). Then, in the in vivo experiment, a total of 44 Wistar rats were allotted into 2 groups that were fed l-isoleucine-supplemented diet and control diet for 35 d. From 15 to 35 d, half of the rats in the 2 groups drank the 4% DSS-adding water. Average daily gain, average daily feed intake and feed conversion of rats were impaired by DSS challenge (P &lt;0.05). Drinking the DSS-supplementing water also increased disease activity index (DAI) and serum urea nitrogen level (P &lt;0.05), shortened colonic length (P &lt;0.05), impaired colonic enterocyte apoptosis, cell cycle, and the ZO-1 mRNA expression (P &lt;0.05), increased the ratio of CD11c-, CD64-, and CD169-positive cells in colon (P &lt;0.05), and induced extensive ulcer, infiltration of inflammatory cells, and collagenous fiber hyperplasia in colon. However, dietary l-isoleucine supplementation attenuated the negative effect of DSS challenge on growth performance (P &lt;0.05), DAI (P &lt;0.05), colonic length and enterocyte apoptosis (P &lt;0.05), and dysfunction of colonic histology, and downregulated the ratio of CD11c-, CD64-, and CD169-positive cells, pro-inflammation cytokines and the mRNA expression of TLR4, MyD88, and NF-κB in the colon of rats (P &lt;0.05). These results suggest that supplementing l-isoleucine in diet improved the DSS-induced growth stunting and colonic damage in rats, which could be associated with the downregulation of inflammation via regulating TLR4/MyD88/NF-κB pathway in colon.


2019 ◽  
Vol 20 (14) ◽  
pp. 3574 ◽  
Author(s):  
Hye-Sun Lim ◽  
Yu Jin Kim ◽  
Bu-Yeo Kim ◽  
Soo-Jin Jeong

The purpose of the present study was to evaluate the effects of bakuchiol on the inflammatory response and to identify the molecular mechanism of the inflammatory effects in a lipopolysaccharide (LPS)-stimulated BV-2 mouse microglial cell line and mice model. The production of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) was measured by enzyme-linked immunosorbent assay. The mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-6 was measured using reverse transcription–polymerase chain reaction analysis. Mitogen-activated protein kinase (MAPK) phosphorylation was determined by western blot analysis. In vitro experiments, bakuchiol significantly suppressed the production of PGE2 and IL-6 in LPS-stimulated BV-2 cells, without causing cytotoxicity. In parallel, bakuchiol significantly inhibited the LPS-stimulated expression of iNOS, COX-2, and IL-6 in BV-2 cells. However, bakuchiol had no effect on the LPS-stimulated production and mRNA expression of TNF-α or on LPS-stimulated c-Jun NH2-terminal kinase phosphorylation. In contrast, p38 MAPK and extracellular signal-regulated kinase (ERK) phosphorylation were inhibited by bakuchiol. In vivo experiments, Bakuchiol reduced microglial activation in the hippocampus and cortex tissue of LPS-injected mice. Bakuchiol significantly suppressed LPS-injected production of TNF-α and IL-6 in serum. These results indicate that the anti-neuroinflammatory effects of bakuchiol in activated microglia are mainly regulated by the inhibition of the p38 MAPK and ERK pathways. We suggest that bakuchiol may be beneficial for various neuroinflammatory diseases.


Author(s):  
Eldafira Eldafira ◽  
Abinawanto Abinawanto ◽  
Luthfiralda Sjahfirdi ◽  
Asmarinah Asmarinah ◽  
Purnomo Soeharso ◽  
...  

Endometriosis is a multifactorial disease in which genetic and environmental factors interact causing its pathogenesis. The aim of this study was to investigate the expression pattern of estrogen receptor α (ERα) and β (ERβ) in endometriosis patients compared to normal endometrioum (n=18) as a control by using Quantitative Real Time PCR method. Moreover, we also measured serum estradiol levels of endometriosis patients in the proliferation phase of the menstrual cycle using the enzyme-linked immunosorbent assay method. The mRNA expression of ERβ was significantly higher in the endometriosis group compared to control, and the result of t-test showed that were significantly different (P<0.05). Overexpression of ERβ in endometriosis was likely to have other significant important impacts in the pathology of endometriosis that allowed ERβ to stimulate prostaglandin production in endometriosis tissue and cells. Estradiol content did not correlate with the ERα expression, and it is weakly correlated with ERβ mRNA expression. Molecular docking analysis showed that ERα and ERβ have different binding interactions with synthetic antiestrogens, whereas the best inhibitor was Ral2 to ERα and Aco1 to ERβ. Thus, both inhibitors could be used as leads in further investigation of ERα, ERβ inhibitory activities in vitro and in vivo.


2019 ◽  
Vol 48 (1) ◽  
pp. 197-209 ◽  
Author(s):  
Hongyao Xu ◽  
Xiangjie Zou ◽  
Pengcheng Xia ◽  
Mohammad Ahmad Kamal Aboudi ◽  
Ran Chen ◽  
...  

Background: Meniscal injury is very common, and injured meniscal tissue has a limited healing ability because of poor vascularity. Platelets contain both pro- and anti-angiogenic factors, which can be released by platelet selective activation. Hypothesis: Platelets release a high level of vascular endothelial growth factor (VEGF) when they are activated by protease-activated receptor 1 (PAR1), whereas the platelets release endostatin when they are activated by protease-activated receptor 4 (PAR4). The PAR1-treated platelets enhance the proliferation of meniscal cells in vitro and promote in vivo healing of wounded meniscal tissue. Study Design: Controlled laboratory study. Method: Platelets were isolated from human blood and activated with different reagents. The released growth factors from the activated platelets were determined by immunostaining and enzyme-linked immunosorbent assay. The effects of the platelets with different treatments on meniscal cells were tested by an in vitro model of cell culture and an in vivo model of wounded meniscal healing. Results: The results indicated that platelets contained both pro- and antiangiogenic factors including VEGF and endostatin. In unactivated platelets, VEGF and endostatin were contained inside of the platelets. Both VEGF and endostatin were released from the platelets when they were activated by thrombin. However, only VEGF was released from the platelets when they were activated by PAR1, and only endostatin was released from the platelets when they were activated by PAR4. The rat meniscal cells grew much faster in the medium that contained PAR1-activated platelets than in the medium that contained either PAR4-activated platelets or unactivated platelets. The wounds treated with PAR1-activated platelets healed faster than those treated with either PAR4-activated platelets or unactivated platelets. Many blood vessel–like structures were found in the wounded menisci treated with PAR1-activated platelets. Conclusion: The PAR1-activated platelets released high levels of VEGF, which increased the proliferation of rat meniscal cells in vitro, enhanced the vascularization of menisci in vivo, and promoted healing of wounded menisci. Clinical Relevance: Our results suggested that selective activated platelets can be used clinically to enhance healing of wounded meniscal tissue.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3827-3827
Author(s):  
Takashi Ito ◽  
Kazuhiro Abeyama ◽  
Ko-ichi Kawahara ◽  
Kamal K. Biswas ◽  
Tomonori Uchimura ◽  
...  

Abstract High Mobility Group box 1(HMGB1) is an abundant DNA-binding protein that acts as a proinflammatory cytokine when released in the extracellular milieu by necrotic and inflammatory cells. Moreover, an increased HMGB1 in the circulation of septic patients may induce multi-organ failure and lethality. However, very recent observations suggest that the protein also acts as an innate adjuvant, stem cell chemoattractant and growth factor. Thus only systemic and circulatory HMGB1 may induce morbidity and mortality, however, localized HMGB1 may have beneficial effects. Therefore, we serially examined the serum HMGB1 level in patients with various diseases, and also evaluated the significance of the protein. We demonstrate here how HMGB1 is localized and acts as an immune-adjuvant and a repairing factor in damaged tissue. We first established specific ELISA method to measure HMGB1. An increased level of HMGB1 was detected in the serum from patients with sever sepsis, infections, malignancy and so on. However, serum HMGB1 concentrations were fluctuated during the clinical course, and could not be concluded as a lethal mediator as previously reported. Next we investigated the reason of dynamic fluctuations of the protein in the circulation. Based on our findings, we proposed that this fluctuation of HMGB1 concentrations may be mediated by at least following three fashions; 1) proteolytic degradation by plasmin and thrombin, 2) endothelial thrombomodulin(TM) adsorption, and 3) generation of antibody against the protein. We observed that plasmin efficiently degraded HMGB1 into small fragments. However, interestingly the generated fragments of the protein still possess an ability to produce TNFa in macrophages through an undefined pathway. TM binds the protein on its N-terminus lectin-like domain. Binding of HMGB1 to TM resulted in decrement of TM’s cofactor activity to activate protein C by thrombin. HMGB1 bound to TM was gradually degraded by thrombin. These may be a system to localize HMGB1 only in injury sites where TM is down-regulated or disappeared through endothelial-loss. This may exert endothelial defense system against extracellular HMGB1 in severe tissue injury. Another possibility is that the generated antibody against HMGB1 may neutralize the proinflammatory action of the protein. In this context, we found that some of the antibodies against HMGB1 have the characteristics of P-ANCA(perinuclear anti-neutrophil cytoplasmic antibody). This may alter the phenotype of the underlining diseases. In conclusion, we suggest that HMGB1 is not merely a lethal mediator, but a kind of “testament” mediator of cell necrosis or invasive attacks to dendritic cells.


Blood ◽  
2009 ◽  
Vol 113 (17) ◽  
pp. 4078-4085 ◽  
Author(s):  
Gwendolyn F. Elphick ◽  
Pranita P. Sarangi ◽  
Young-Min Hyun ◽  
Joseph A. Hollenbaugh ◽  
Alfred Ayala ◽  
...  

Abstract Integrin-mediated cell migration is central to many biologic and pathologic processes. During inflammation, tissue injury results from excessive infiltration and sequestration of activated leukocytes. Recombinant human activated protein C (rhAPC) has been shown to protect patients with severe sepsis, although the mechanism underlying this protective effect remains unclear. Here, we show that rhAPC directly binds to β1 and β3 integrins and inhibits neutrophil migration, both in vitro and in vivo. We found that human APC possesses an Arg-Gly-Asp (RGD) sequence, which is critical for the inhibition. Mutation of this sequence abolished both integrin binding and inhibition of neutrophil migration. In addition, treatment of septic mice with a RGD peptide recapitulated the beneficial effects of rhAPC on survival. Thus, we conclude that leukocyte integrins are novel cellular receptors for rhAPC and the interaction decreases neutrophil recruitment into tissues, providing a potential mechanism by which rhAPC may protect against sepsis.


2019 ◽  
Vol 12 (5) ◽  
pp. dmm039206 ◽  
Author(s):  
Sara Carbajo-Pescador ◽  
David Porras ◽  
María Victoria García-Mediavilla ◽  
Susana Martínez-Flórez ◽  
María Juarez-Fernández ◽  
...  

Blood ◽  
1990 ◽  
Vol 75 (2) ◽  
pp. 470-478 ◽  
Author(s):  
P La Celle ◽  
FA Blumenstock ◽  
C McKinley ◽  
TM Saba ◽  
PA Vincent ◽  
...  

Abstract Plasma fibronectin augments the clearance of blood-borne foreign and effete complexes by mononuclear phagocytes. The release of a “gelatin- like” ligand into plasma after thermal injury has been reported. We quantified the release of this collagenous debris from thermally injured skin, and its potential interaction with soluble fibronectin in plasma using anesthetized rats. Collagen-like material debris in the plasma was detected by assay of hydroxyproline. Fibronectin was measured by a double antibody enzyme-linked immunosorbent assay (ELISA) technique. Over a 24-hour postburn interval, plasma hydroxyproline increased from 6.7 +/- 0.6 micrograms/mL to a maximum of 19.0 +/- 3.3 micrograms/mL at 60 minutes postburn, and normalized by 6 hours. A direct correlation existed between the magnitude of burn injury and the increase in plasma hydroxyproline. In parallel, plasma fibronectin declined over a 15-minute to 2-hour period postburn, and normalized by 3 to 4 hours with rebound hyperfibronectinemia observed at 24 hours. The elevation in total plasma hydroxyproline was not due to an increase in plasma Clq (zero time, 26.2 +/- 1.4 micrograms/mL; 60 minutes, 23.9 +/- 1.1 micrograms/mL). Tracer studies with 125I-fibronectin showed that the acute decline of plasma fibronectin was due to its uptake by the liver and binding to sites of tissue injury. Total hydroxyproline in extracts of burn skin, used as an index of soluble collagenous material, rose from 15 +/- 3.3 micrograms/g skin at zero time to 129.3 +/- 43.7 micrograms/g skin by 5 minutes postburn, with a decline to 38 +/- 22 micrograms/g skin by 24 hours. The formation of circulating fibronectin-gelatin complexes in vivo was documented by cross- immunoelectrophoresis coupled with autoradiography using 125I-gelatin as a model ligand. Thus, collagenous tissue debris from burned skin may enter the plasma after thermal injury and directly complexes with soluble fibronectin before hepatic phagocytic clearance.


Sign in / Sign up

Export Citation Format

Share Document