scholarly journals EFFECTS OF CHITOSAN COATING ON THE PHYSICAL, MECHANICAL AND ANTIMICROBIAL PROPERTIES OF FOOD PACKAGING PAPER

2020 ◽  
Vol 21 (2) ◽  
pp. 62 ◽  
Author(s):  
Kurnia Wiji Prasetiyo ◽  
Deni Zulfiana ◽  
Sita Heris Anita ◽  
Widya Fatriasari ◽  
Lisman Suryanegara ◽  
...  

EFFECTS OF CHITOSAN COATING ON THE PHYSICAL, MECHANICAL AND ANTIMICROBIAL PROPERTIES OF FOOD PACKAGING PAPER. The coating process on food packaging paper is carried out to improve the food safety and health aspect from dangerous substance migration from food packaging into food. Chitosan has attracted interest in packaging, especially in food packaging as edible films and coatings. A paper from oil palm empty fruit bunches (OPEFB) pulp was coated with chitosan using different pulp weight (1, 1.5, 2 g) and chitosan content (0.25, 0.50, 0.75, 1 g) as parameters. The effect of chitosan as coating material on physical, mechanical, and antimicrobial properties was studied. The results showed that the density and grammage values of the paper increased after coating due to the increasing of chitosan content. The mechanical properties of the coated paper, such as tensile strength, tensile modulus and elongation, improved in line with the increase of chitosan content and pulp weight. The addition of chitosan on paper imparts antimicrobial properties against Gram-positive bacteria (Staphylococcus aureus) and Gram- negative bacteria (Escherichia coli).

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 121
Author(s):  
Ghita Amor ◽  
Mohammed Sabbah ◽  
Lucia Caputo ◽  
Mohamed Idbella ◽  
Vincenzo De Feo ◽  
...  

The essential oil (EO) from basil—Ocimum basilicum—was characterized, microencapsulated by vibration technology, and used to prepare a new type of packaging system designed to extend the food shelf life. The basil essential oil (BEO) chemical composition and antimicrobial activity were analyzed, as well as the morphological and biological properties of the derived BEO microcapsules (BEOMC). Analysis of BEO by gas chromatography demonstrated that the main component was linalool, whereas the study of its antimicrobial activity showed a significant inhibitory effect against all the microorganisms tested, mostly Gram-positive bacteria. Moreover, the prepared BEOMC showed a spheroidal shape and retained the EO antimicrobial activity. Finally, chitosan-based edible films were produced, grafted with BEOMC, and characterized for their physicochemical and biological properties. Since their effective antimicrobial activity was demonstrated, these films were tested as packaging system by wrapping cooked ham samples during 10 days of storage, with the aim of their possible use to extend the shelf life of the product. It was demonstrated that the obtained active film can both control the bacterial growth of the cooked ham and markedly inhibit the pH increase of the packaged food.


2020 ◽  
Author(s):  
Kurnia Wiji Prasetiyo ◽  
Deni Zulfiana ◽  
Sita Heris Anita ◽  
Widya Fatriasari ◽  
Lisman Suryanegara ◽  
...  

2019 ◽  
Vol 125 ◽  
pp. 07011
Author(s):  
Rini Umiyati ◽  
Chusnul Hidayat ◽  
Ria Millati ◽  
Teguh Ariyanto

Nyamplung (Calophyllum inophyllum) cake as a by-product of nyamplung oil production is still limited. This research aimed to evaluate characteristics of antimicrobial bio-plastic made from hydroxypropyl starch as a basic ingredient and Nyamplung cake extract as additive. Nyamplung cake extract addition affected bio-plastic mechanical property by reduction of tensile strength but improved physical properties by reduction of vapor and oxygen permeability, water solubility, and increased elongation. This was probably due to the extract serve as natural crosslinking. Fourier Transform Infrared Spectroscopy analysis showed no difference in five bio-plastic samples, which probably caused by low concentration of extract. Thermogravimetry analysis showed the highest weight reduction in control of 95.824% and the lowest on Ext2% of 84.471%. Morphology analysis showed agglomeration of the extract on sample surface due to uneven ingredient distribution in mixture. Bio-plastic was more sensitive against gram positive bacteria than gram negative with their respective largest inhibition zone of 30 mm (Staphylococcus aureus) and 23 mm (Escherichia coli). This was probably due to the content of the extract serve as natural crosslinking and antibacterial agent.


2017 ◽  
Vol 34 (2) ◽  
pp. 160-178 ◽  
Author(s):  
Nattakarn Hongsriphan ◽  
Supachai Sanga

This research developed antibacterial food packaging sheets from biodegradable poly(lactic acid)/poly(butylene succinate) 90/10 wt% blend. The corona discharge energy via input current (in A) was set at three levels (4, 5, and 6 A) to investigate its influence on the coating content. Physical and chemical characteristics of treated surfaces were studied using scanning electron microscope, X-ray photoelectron spectroscopy, and contact angle measurement. A simple dip coating was carried out by immersing the sheets in chitosan solutions with four different concentrations (0.25, 0.50, 1.00, and 2.00% w/v). Chitosan content, antibacterial activity, and water vapour transmission rate were evaluated. Tensile tests were performed and results were statistically analyzed. We found that the sheets treated at 4 A corona discharge energy obtained the highest chitosan content while the sheets maintained elongation at break values similar to the untreated sheets. Chitosan coating had some water vapour permeation barrier and also mechanically reinforced the corona-treated sheets. Antibacterial activity tests against Staphylococcus aureus and Escherichia coli showed that chitosan coating inhibited the growth of both microorganisms as a function of chitosan coating content.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 954 ◽  
Author(s):  
Rungsiri Suriyatem ◽  
Rafael Auras ◽  
Chitsiri Rachtanapun ◽  
Pornchai Rachtanapun

Active films from rice starch/carboxymethyl chitosan (RS/CMCh) incorporated with propolis extract (ppl) were developed and characterized. The effect of the ppl content (0–10% w/w based on RS/CMCh) on the developed films’ properties were determined by measuring the optical, mechanical, thermal, swelling, barrier, antimicrobial, and antioxidant attributes. The thermal stability and biodegradability of the films were also investigated. As the ppl content increased, free radical scavenging and a* and b* color values increased, whereas luminosity (L*) and swellability of the films decreased. The active films with 5–10% ppl possessed antimicrobial ability against Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus). The active film with 10% ppl displayed increased flexibility and thermal stability, without a change in oxygen permeability. The results indicated that incorporation of ppl into RS/CMCh film could enhance the films’ antioxidant and antimicrobial properties.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2282
Author(s):  
Sneh Punia Punia Bangar ◽  
Vandana Chaudhary ◽  
Neha Thakur ◽  
Priyanka Kajla ◽  
Manoj Kumar ◽  
...  

Edible packaging is a swiftly emerging art of science in which edible biopolymers like lipids, polysaccharides, proteins, resins, etc., and other consumable constituents extracted from various non-conventional sources are used alone or imbibed together. Edible packaging with antimicrobial components had led to the development of the hypothesis of active packaging which safeguards the quality of foods as well as health of consumers. Natural antimicrobial agents (NAMAs) like essential oils from spices, bioactive compounds derived from vegetables and fruits, animal and microorganism derived compounds having antimicrobial properties can be potentially used in edible films as superior replcement for synthetic compounds, thus serving the purpose of quality and heath. Most of the natural antimicrobial agents enjoy GRAS status and are safer than their synthetic counterparts. This review focuses on updated literature on the sources, properties and potential applications of NAMAs in the food industry. This review also analyzes the biodegradability and biocompatibility and edibility properties of NAMAs enriched films and it can be concluded that NAMAs are better substitutes but affect the organoleptic as well as the mechanical properties of the films. Despite many advantages, the inclusion of NAMAs into the films needs to be investigated more to quantify the inhibitory concentration without affecting the properties of films and exerting potential antimicrobial action to ensure food safety.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 566 ◽  
Author(s):  
Petronela Nechita ◽  
Mirela Roman (Iana-Roman)

Paper and board show many advantages as packaging materials, but the current technologies employed to obtain adequate barrier properties for food packaging use synthetic polymers coating and lamination with plastic or aluminium foils—treatments which have a negative impact on packaging sustainability, poor recyclability and lack of biodegradability. Recently, biopolymers have attracted increased attention as paper coatings, which can provide new combinations in composite formulas to meet the requirements of food packaging. The number of studies on biopolymers for developing barrier properties of packaging materials is increasing, but only a few of them are addressed to food packaging paper. Polysaccharides are viewed as the main candidates to substitute oil-based polymers in food paper coating, due to their film forming ability, good affinity for paper substrate, appropriate barrier to gases and aroma, and positive effect on mechanical strength. Additionally, these biopolymers are biodegradable, non-toxic and act as a matrix for incorporation additives with specific functionalities for coated paper (i.e., active-antimicrobial properties). This paper presents an overview on the availability and application of polysaccharides from vegetal and marine biomass in coatings for foods packaging paper. The extraction methods, chemical modification and combination routes of these biopolymers in coatings for paper packaging are discussed.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 722
Author(s):  
Seyed Hadi Peighambardoust ◽  
Seyedeh Homa Fasihnia ◽  
Seyed Jamaleddin Peighambardoust ◽  
Mirian Pateiro ◽  
Rubén Domínguez ◽  
...  

Development of polypropylene (PP) films incorporating antioxidant-antimicrobial agents can inhibit microbial growth and reduce undesirable deteriorating reactions and can preserve the quality of food. This study was aimed to use a combination of sorbic acid (SA), butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT) to provide a synergistic effect at their reduced concentrations. A Combination of the additives was more effective in enhancing mechanical properties compared to their single state in film composition. The PP-2%SA-3%BHA film (T3) had the highest tensile strength (17.9 MPa) and the lowest elongation at break (7.1%) than other films. The fourier-transform infrared (FTIR) proposed physical mixing of active additives within PP-matrix. Scanning electron microscopy showed uniform dispersion of the additives in PP-2%SA-1%BHT-1%BHA film (T4) compared to others. BHT containing films decreased the storage and loss moduli leading to weakening of film viscoelastic behaviour and reducing film melting point. The prepared active films showed higher antioxidant activity than control PP-film following an order of T4 > T2 > T3 corresponding to DPPH radical scavenging values of 89.1, 83.4 and 79.1%, respectively. All active films inhibited gram-negative and gram-positive bacteria growth. The results of this study indicated that the prepared active films possess desirable mechanical, thermal, antioxidant and antimicrobial properties enabling their use in food packaging.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
Shihan Weng ◽  
Sara Sáez-Orviz ◽  
Ismael Marcet ◽  
Manuel Rendueles ◽  
Mario Díaz

Proteins, such as those in blood from slaughterhouses, are a good option for developing edible films. However, films made exclusively from proteins have low strength and high water solubility, which makes them difficult to use in the food industry. The use of cellulosic material, such as nanofibrillated cellulose (NFC), can improve the properties of these films. In the present work, bovine plasma was acidified and treated with ethanol to precipitate its proteins, and these proteins were used to prepare films reinforced with several concentrations of NFC. In addition, control films prepared with untreated bovine plasma and reinforced with NFC were prepared as well. These new edible films were characterized according to their mechanical properties, water vapor permeability, light transmittance, and microstructure. Furthermore, the film with the best properties was selected to be additivated with nisin to test its antimicrobial properties by wrapping meat previously contaminated with Staphylococcus aureus. In this sense, films prepared with the extracted proteins showed better properties than the films prepared with untreated plasma. In addition, the results showed that the reinforcement of the films with a 10% (w/w) of NFC decreased their water solubility and improved their puncture strength and water vapor barrier properties. Finally, the addition of nisin to the films prepared with extracted protein from bovine plasma and NFC gave them antimicrobial properties against S. aureus.


2017 ◽  
Vol 19 ◽  
pp. 57 ◽  
Author(s):  
FA Mustapha ◽  
J Jai ◽  
F Hamidon ◽  
ZI Md Sharif ◽  
N Mohd Yusof

<p>Malaysia is among 12 countries in the world that rich in biodiversity including an assortment of plants with potential sources for new antimicrobial agents. Despite the fact that various plants have been screened, the requirement for detail study on antimicrobial compounds from plants is preceded as safer and better agent to inhibit growth of microbes. Therefore, selected Malaysia plants with medicinal properties are listed for further review in their antimicrobial activity and their major compound that act as antimicrobial agent. The major groups of the antimicrobial constituents are phenolics, phenolic acids, quinones, saponins, flavonoids, tannins, coumarins, terpenoids and alkaloids. These compounds are secondary metabolites that play the main role in plant defense mechanism. They also exhibited inhibitory effect on various microorganisms such as <em>Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli </em>and <em>Candida albicans</em>. Compounds derived from Malaysian plants have the potential to be used as antimicrobial additive as most of their extracts containing active compounds such as caffeic acid, pyrogallol, catechin and curcumin. Extraction method of plants extract is done either by conventional method of maceration and extraction under reflux and steam distillation or modern method of microwave assisted extraction, supercritical fluid extraction and ultrasound-assisted solvent extraction. Even though plants extracts with medicinal properties are gaining fame for their antimicrobial properties, however the study on incorporation of the extracts into edible films as antimicrobial food packaging is limited. The advantages of using an edible film with antimicrobial agent plants for food products are it safe to use and it able to extend the shelf life while reducing packaging waste.</p><p>Chemical Engineering Research Bulletin 19(2017) 57-66</p><strong></strong>


Sign in / Sign up

Export Citation Format

Share Document