scholarly journals A water footprint approach to guide water resource management in data-scarce regions: A case study for the Upper Ewaso Ng’iro Basin, Mount Kenya

Water SA ◽  
2021 ◽  
Vol 47 (3 July) ◽  
Author(s):  
Michael van der Laan ◽  
Sandra Eckert ◽  
Maya da Silva ◽  
John Annandale

Due to population growth and agricultural intensification, water scarcity is increasing in the Upper Ewaso Ng’iro Basin. Quantitative information is needed to improve the management of this resource, but is a challenge due to lack of hydrometeorological data. Using water footprint thinking, a pragmatic approach applying available information and simple assumptions was used to estimate blue and green water availability and consumption for different land uses and activities. Despite the attention it receives, flower production makes up a small component of the basin’s water footprint (1.4% of blue water consumed, roses used 0.73%), although the drastic impact of horticulture on low flows during dry periods is recognized. Surface water evaporation from irrigation dams containing captured floodwaters or pumped groundwater has a water footprint comparable to greenhouse horticultural production itself. Small-scale irrigation was estimated to use 71.4% of the blue water consumed, while total commercial horticultural production was estimated to use 8.2%. Direct human consumption was estimated at 3% and livestock and wildlife consumption at 4.2% of consumed blue water. Labour opportunities were almost 10 times higher for roses than for maize per hectare and per m3 of water consumed. Water productivity in terms of selling price was 128 times higher for 1 tonne of roses than for 1 tonne of maize. This approach can be used in data-poor regions to advance understanding between multiple stakeholders (such as between farmers, pastoralists and conservationists) for participatory management, and to better understand the basin’s water balance to estimate exploitable water resources.

2010 ◽  
Vol 27 ◽  
pp. 65-70 ◽  
Author(s):  
K. Drastig ◽  
A. Prochnow ◽  
S. Kraatz ◽  
H. Klauss ◽  
M. Plöchl

Abstract. The working group "Adaptation to Climate Change" at the Leibniz-Institute for Agricultural Engineering Potsdam-Bornim (ATB) is introduced. This group calculates the water footprint for agricultural processes and farms, distinguished into green water footprint, blue water footprint, and dilution water footprint. The green and blue water demand of a dairy farm plays a pivotal role in the regional water balance. Considering already existing and forthcoming climate change effects there is a need to determine the water cycle in the field and in housing for process chain optimisation for the adaptation to an expected increasing water scarcity. Resulting investments to boost water productivity and to improve water use efficiency in milk production are two pathways to adapt to climate change effects. In this paper the calculation of blue water demand for dairy farming in Brandenburg (Germany) is presented. The water used for feeding, milk processing, and servicing of cows over the time period of ten years was assessed in our study. The preliminary results of the calculation of the direct blue water footprint shows a decreasing water demand in the dairy production from the year 1999 with 5.98×109 L/yr to a water demand of 5.00×109 L/yr in the year 2008 in Brandenburg because of decreasing animal numbers and an improved average milk yield per cow. Improved feeding practices and shifted breeding to greater-volume producing Holstein-Friesian cow allow the production of milk in a more water sustainable way. The mean blue water consumption for the production of 1 kg milk in the time period between 1999 to 2008 was 3.94±0.29 L. The main part of the consumed water seems to stem from indirect used green water for the production of feed for the cows.


2015 ◽  
Vol 13 (2) ◽  
pp. e1203 ◽  
Author(s):  
Daniel Chico ◽  
Antonio D. Santiago ◽  
Alberto Garrido

<p>Ethanol production in Brazil has grown by 219% between 2001 and 2012, increasing the use of land and water resources. In the semi-arid north-eastern Brazil, irrigation is the main way for improving sugarcane production. This study aimed at quantifying water consumed in ethanol production from sugarcane in this region using the water footprint (WF) indicator and complementing it with an evaluation of the water apparent productivity (WAP). This way we were able to provide a measure of the crop´s physical and economic water productivity using, respectively, the WF and WAP concepts. We studied sugarcane cultivation under nine different water regimes, including rainfed and full irrigation. Data from a mill of the state of Alagoas for three production seasons were used. Irrigation influenced sugarcane yield increasing total profit per hectare and economic water productivity. Full irrigation showed the lowest WF, 1229 litres of water per litre of ethanol (L/L), whereas rainfed production showed the highest WF, 1646 L/L. However, the lower WF in full irrigation as compared to the rest of the water regimes implied the use of higher volumes of blue water per cultivated hectare. Lower water regimes yielded the lowest economic productivity, 0.72 US$/m<sup>3</sup> for rainfed production as compared to 1.11 US$/m<sup>3</sup> for full irrigation. Since economic revenues are increased with higher water regimes, there are incentives for the development of these higher water regimes. This will lead to higher general crop water and economic productivity at field level, as green water is replaced by blue water consumption.</p>


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1249
Author(s):  
Tariq Khan ◽  
Hamideh Nouri ◽  
Martijn J. Booij ◽  
Arjen Y. Hoekstra ◽  
Hizbullah Khan ◽  
...  

Pakistan possesses the fourth largest irrigation network in the world, serving 20.2 million hectares of cultivated land. With an increasing irrigated area, Pakistan is short of freshwater resources and faces severe water scarcity and food security challenges. This is the first comprehensive study on the water footprint (WF) of crop production in Peshawar Basin. WF is defined as the volume of freshwater required to produce goods and services. In this study, we assessed the blue and green water footprints (WFs) and annual blue and green water consumption of major crops (maize, rice, tobacco, wheat, barley, sugarcane, and sugar beet) in Peshawar Basin, Pakistan. The Global Water Footprint Assessment Standard (GWFAS) and AquaCrop model were used to model the daily WF of each crop from 1986 to 2015. In addition, the blue water scarcity, in the context of available surface water, and economic water productivity (EWP) of these crops were assessed. The 30 year average blue and green WFs of major crops revealed that maize had the highest blue and green WFs (7077 and 2744 m3/ton, respectively) and sugarcane had the lowest blue and green WFs (174 and 45 m3/ton, respectively). The average annual consumption of blue water by major crops in the basin was 1.9 billion m3, where 67% was used for sugarcane and maize, covering 48% of the cropland. The average annual consumption of green water was 1.0 billion m3, where 68% was used for wheat and sugarcane, covering 67% of the cropland. The WFs of all crops exceeded the global average. The results showed that annually the basin is supplied with 30 billion m3 of freshwater. Annually, 3 billion m3 of freshwater leaves the basin unutilized. The average annual blue water consumption by major crops is 31% of the total available surface water (6 billion m3) in the basin. Tobacco and sugar beet had the highest blue and green EWP while wheat and maize had the lowest. The findings of this study can help the water management authorities in formulating a comprehensive policy for efficient utilization of available water resources in Peshawar Basin.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 244
Author(s):  
Nurul Azmah Safie ◽  
M.A. Malek ◽  
Z. Z. Noor

Change in climate, increasing world population and industrialization have placed considerable stress on water availability at certain places. Water Footprint accounting is a reliable technique that can be used for a better water management. This study focuses on establishing a doable methodology on water footprint accounting and assessment for direct water consumption from domestic and institutional sectors located in an urbanized environment such as Klang Valley, Kuala Lumpur. It includes investigation of Water Footprint at domestic household, schools, colleges, terminals and offices in Klang Valley. The value of water consumption, water production and water pollution will be determined using Hoekstra’s approach for green water, blue water and grey water. In addition, findings from this study will be linked to two other elements namely energy and food. This link is named as Water-Energy-Food Nexus. This study will establish the quantity and criteria of Water-Energy-Food Nexus specifically tailored to domestic and institutional sectors in Klang Valley.


2020 ◽  
Vol 12 (13) ◽  
pp. 5274 ◽  
Author(s):  
P.X.H. Bong ◽  
M.A. Malek ◽  
N.H. Mardi ◽  
Marlia M. Hanafiah

Modern technology and life-style advancements have increased the demand for clean water. Based on this trend it is expected that our water resources will be under stress leading to a high probability of scarcity. This study aims to evaluate the environmental impacts of selected traditional food manufacturing products namely: tempe, lemang, noodle laksam, fish crackers and salted fish in Malaysia. The cradle-to-gate approach on water footprint assessment (WFA) of these selected traditional food products was carried out using Water Footprint Network (WFN) and Life Cycle Assessment (LCA). Freshwater eutrophication (FEP), marine eutrophication (MEP), freshwater ecotoxicity (FETP), marine ecotoxicity (METP) and water consumption (WCP), LCA were investigated using ReCiPe 2016 methodology. Water footprint accounting of blue water footprint (WFblue), green water footprint (WFgreen) and grey water footprint (WFgrey) were established in this study. It was found that total water footprint for lemang production was highest at 3862.13 m3/ton. The lowest total water footprint was found to be fish cracker production at 135.88 m3/ton. Blue water scarcity (WSblue) and water pollution level (WPL) of these selected food products were also determined to identify the environmental hotspots. Results in this study showed that the WSblue and WPL of these selected food products did not exceed 1%, which is considered sustainable. Based on midpoint approach adopted in this study, the characterization factors for FEP, MEP, FETP, METP and WCP on these selected food products were evaluated. It is recommended that alternative ingredients or product processes be designed in order to produce more sustainable lemang.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2696
Author(s):  
Mesfin M. Mekonnen ◽  
Winnie Gerbens-Leenes

Agricultural production is the main consumer of water. Future population growth, income growth, and dietary shifts are expected to increase demand for water. The paper presents a brief review of the water footprint of crop production and the sustainability of the blue water footprint. The estimated global consumptive (green plus blue) water footprint ranges from 5938 to 8508 km3/year. The water footprint is projected to increase by as much as 22% due to climate change and land use change by 2090. Approximately 57% of the global blue water footprint is shown to violate the environmental flow requirements. This calls for action to improve the sustainability of water and protect ecosystems that depend on it. Some of the measures include increasing water productivity, setting benchmarks, setting caps on the water footprint per river basin, shifting the diets to food items with low water requirements, and reducing food waste.


2016 ◽  
Author(s):  
Sang-Hyun Lee ◽  
Rabi H. Mohtar ◽  
Jin-Yong Choi ◽  
Seung-Hwan Yoo

Abstract. This study aims to analyse the characteristics of global virtual water trade (GVWT) such as connectivity of each trader, vulnerable importers, and influential countries using degree and eigenvector centrality during the period 2006–2010. The degree centrality was used to measure the connectivity and eigenvector centrality was used to measure the influence on entire GVWT network. Mexico, Egypt, China, Korea Rep., and Japan were classified to vulnerable importers because they imported a lot of virtual water with the low connectivity. Especially, Egypt had 15.3 Gm³ year-1 blue water savings effects through GVWT, thus the vulnerable structure could cause the water shortage problem in importer. The entire GVWT network could be changed by a few nodes which call influential traders, and we figured out the influential traders using eigenvector centrality. In GVWT for food crops, the USA, Russian Federation, Thailand, and Canada had high eigenvector with a large volume of green water trade. In case of blue water trade, western Asia, Pakistan, and India had high eigenvector centrality. For feed crops, the green water trade in the USA, Brazil, and Argentina was the most influential. However, Argentina and Pakistan used the high proportion of internal water resource for virtual water export (32.9 and 25.1 %), thus rest of traders should consider the water resource management in these exporters carefully.


2021 ◽  
Vol 10 (6) ◽  
pp. e26610615777
Author(s):  
Ana Luiza Grateki Barbosa ◽  
Daniel Brasil Ferreira Pinto ◽  
Rafael Alvarenga Almeida

Currently, the management of water resources has gained greater visibility and has become indispensable, with the need for different methodologies which consider all water used and incorporated in the processes and products. In this way, the water footprint concept has been introduced to calculate the appropriation of fresh water on the part of the humankind. Thus, the objective of this work was to determine the water footprint in some sectors of family farming in the municipality of Teófilo Otoni – MG, analyzing the agricultural production of crops cultivated exclusively by the sector in 2017 in Teófilo Otoni. The cultivation of pumpkin, banana, chayote, beans, cassava, Maize, peppers, okra, cabbage, and tangerine were studied. Thus, the total water footprint for the year 2017 was 13,996,735.05 m3.t-1, in which the green water footprint represents 86%, the blue water footprint represents 12.5% and the gray water footprint equals 1.5%. The family farming sector of Teófilo Otoni demands an average of 196.73 liters for a production of R$ 1.00.


2020 ◽  
Author(s):  
Raj Deva Singh ◽  
Kumar Ghimire ◽  
Ashish Pandey

&lt;p&gt;Nepal is an agrarian country and almost one-third of Gross Domestic Product (GDP) is dependent on agricultural sector. Koshi river basin is the largest basin in the country and serves large share on agricultural production. Like another country, Nepalese agriculture holds largest water use in agriculture. In this context, it is necessary to reduce water use pressure. In this study, water footprint of different crop (rice, maize, wheat, millet, sugarcane, potato and barley) have been estimated for the year 2005 -2014 to get the average water footprint of crop production during study period. CROPWAT model, developed by Food and Agriculture Organization (FAO 2010b).&lt;/p&gt;&lt;p&gt;For the computation of the green and blue water footprints, estimated values of ET (the output of CROPWAT model) and yield (derived from statistical data) are utilised. Blue and green water footprint are computed for different districts (16 districts within KRB) / for KRB in different years (10 years from 2005 to 2014) and crops (considered 7 local crops). The water footprint of crops production for any district or basin represents the average of WF production of seven crops in the respective district or basin.&lt;/p&gt;&lt;p&gt;The study provides a picture of green and blue water use in crop production in the field and reduction in the water footprint of crop production by selecting suitable crops at different places in the field. The Crop, that has lower water footprint, can be intensified at that location and the crops, having higher water footprint, can be discontinued for production or measure for water saving technique needs to be implemented reducing evapotranspiration. The water footprint of agriculture crop production can be reduced by increasing the yield of the crops. Some measures like use of an improved variety of seed, fertilizer, mechanized farming and soil moisture conservation technology may also be used to increase the crop yields.&lt;/p&gt;&lt;p&gt;The crop harvested areas include both rainfed as well as irrigated land. Agricultural land occupies 22% of the study area, out of which 94% areas are rainfed whereas remaining 6% areas are under irrigation. The study shows 98% of total water use in crop production is due to green water use (received from rainfall) and remaining 2 % is due to blue water use received from irrigation (surface and ground water as source). Potato has 22% blue water proportion and contributes 85% share to the total blue water use in the basin. Maize and rice together hold 77% share of total water use in crops production. The average annual water footprint of crop production in KRB is 1248 cubic meter/ton having the variation of 9% during the period of 2005-2014. Sunsari, Dhankuta districts have lower water footprint of crop production. The coefficient of variation of water footprint of millet crop production is lower as compared to those of other crops considered for study whereas sugarcane has a higher variation of water footprint for its production.&lt;/p&gt;


2019 ◽  
Vol 116 (11) ◽  
pp. 4893-4898 ◽  
Author(s):  
Joep F. Schyns ◽  
Arjen Y. Hoekstra ◽  
Martijn J. Booij ◽  
Rick J. Hogeboom ◽  
Mesfin M. Mekonnen

Green water––rainfall over land that eventually flows back to the atmosphere as evapotranspiration––is the main source of water to produce food, feed, fiber, timber, and bioenergy. To understand how freshwater scarcity constrains production of these goods, we need to consider limits to the green water footprint (WFg), the green water flow allocated to human society. However, research traditionally focuses on scarcity of blue water––groundwater and surface water. Here we expand the debate on water scarcity by considering green water scarcity (WSg). At 5 × 5 arc-minute spatial resolution, we quantify WFg and the maximum sustainable level to this footprint (WFg,m), while accounting for green water requirements to support biodiversity. We then estimate WSg per country as the ratio of the national aggregate WFg to the national aggregate WFg,m. We find that globally WFg amounts to 56% of WFg,m, and overshoots it in several places, for example in countries in Europe, Central America, the Middle East, and South Asia. The sustainably available green water flows in these countries are mostly or fully allocated to human activities (predominately agriculture and forestry), occasionally at the cost of green water flows earmarked for nature. By ignoring limits to the growing human WFg, we risk further loss of ecosystem values that depend on the remaining untouched green water flows. We emphasize that green water is a critical and limited resource that should explicitly be part of any assessment of water scarcity, food security, or bioenergy potential.


Sign in / Sign up

Export Citation Format

Share Document