Determination of Magnetic Losses in a Transformer by Wattmetric Method

Author(s):  
Sergey Plotnikov ◽  

The purpose of the article is to describe the methodology for determining the components of losses in the magnetic circuit of a transformer. Based on current empirical knowledge about the extent to which each of the three components of the losses in the steel of the magnetic circuit depends on the frequency of the magnetic field, a wattmetric method for determining these losses has been developed. The method consists in measuring the total losses in the magnetic circuit at three frequencies using the idle experience and calculating the three components of the losses. It does not matter to what extent each component depends on the amplitude of mag-netic induction or other parameters. It has been established that it is advisable to carry out idling experiments in the range of 50 ... 70 Hz, in which there is no dynamic measurement error, and the frequency error of the coefficients of the calculated matrix is negligible. The results obtained for a single-phase transformer are in good agreement with modern ideas about the ratio of the three components of the losses in the magnetic circuit.

2021 ◽  
Vol 21 (5) ◽  
pp. 150-157
Author(s):  
Maciej Jakubczak ◽  
Jacek Kurzyna ◽  
Arsenii Riazantsev

Abstract The magnetic circuit of a 500 W class Hall thruster, an electric propulsive device for spacecraft, was characterized experimentally and the results compared with simulation in order to verify the design. The commercial 3D gaussmeter, which was used in this work, was additionally recalibrated to compensate for translation and rotation of individual Hall sensors inside the probe. The Stokes stream function approach was applied to reconstruct the magnetic field topography in the thruster. The procedure, carried out on four different cases, yielded very good agreement between simulations and measurements, even for cusped configurations. Presented technique could be used as a robust method of verification of new magnetic circuit designs not only for Hall thrusters but also for a wide class of plasma devices for which detailed knowledge about actual distribution of magnetic field is crucial for optimization.


2004 ◽  
Vol 15 (06) ◽  
pp. 783-807
Author(s):  
L. WANG ◽  
H. S. LIM ◽  
C. K. ONG

Novel procedures to determine the parallel upper critical field Bc2 (one-dimensional, 1D) have been proposed within a continuous Ginzburg–Landau model. Unlike conventional methods, where Bc2 is obtained through the determination of the smallest eigenvalue of an appropriate eigen equation, the square of the magnetic field is treated as eigenvalue problems by two procedures so that the upper critical field can be directly deduced. The two procedures proposed are extended to determine the upper critical field in the c–a crystal plane (two-dimensional, 2D) with an arbitrary angle θ tilted from the c-axis. The calculated Bc2 from the two procedures are consistent with each other in both 1D and 2D cases. Moreover, the values of Bc2 near the direction parallel to the layers obtained in the 2D case well approximate the counterparts in the 1D case. The properties of the calculated Bc2 are in reasonably good agreement with existing theories and experiments. The profiles of the order parameters associated with Bc2 for both 1D and 2D cases are Gaussian-like, further validating the methodology proposed.


2021 ◽  
Vol 12 (1) ◽  
pp. 7-12
Author(s):  
V. M. Fedosyuk

The permanent magnetic field in addition to electromagnetic radiation has a significant effect on performance of devices. This is particularly true for highly sensitive precision measuring equipment, such as, for example, magnetometers or photomultiplier tubes. In this regard a new high-performance materials for protection against permanent fields and electromagnetic radiation need to be developed. The purpose of this paper is a development of a hardware and software complex for high-precision determination of permanent magnetic field attenuation coefficient and certification of protective materials.This paper describes an experimental installation for determining the attenuation coefficient of a permanent magnetic field using materials and coatings on standard package for electronic equipment. The installation ensures a uniform magnetic field flow in the measurement volume. The advantage of the measuring device is the ability to measure magnetic field in three coordinates due to the use of three pairs of Helmholtz coils and a three-dimensional Hall sensor. The software will enable to control of the magnetic field in all three directions, simulating the real operating conditions of devices that require protection from such influences. In addition, a movable positioning system makes it possible to compensate for the Earth's magnetic field, which increases the accuracy of estimating the attenuation coefficient by protective materials in weak magnetic field.An alternative use of the capabilities of the installation is to test the performance of the devices in a permanent magnetic field and evaluate the electromagnetic compatibility. Experimental results of the work includes determination of the magnetic field attenuation coefficient using standard photomultiplier tube package made of electrolytically deposited permalloy and the sheet of annealed permalloy. Thus, the effect of annealing and closed magnetic circuit on the degree of weakening of the magnetic field is shown. It has been demonstrated that annealing which causes a significant increase in the magnetic permeability promotes an effective attenuation of weak magnetic fields (up to 1 mT). In magnetic fields with an induction of 1 mT or more, effective attenuation is provided by a closed magnetic circuit.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 654 ◽  
Author(s):  
Sebastian Haas ◽  
Mike Mosbacher ◽  
Oleg Senkov ◽  
Michael Feuerbacher ◽  
Jens Freudenberger ◽  
...  

We determined the entropy of high entropy alloys by investigating single-crystalline nickel and five high entropy alloys: two fcc-alloys, two bcc-alloys and one hcp-alloy. Since the configurational entropy of these single-phase alloys differs from alloys using a base element, it is important to quantify the entropy. Using differential scanning calorimetry, cp-measurements are carried out from −170 °C to the materials’ solidus temperatures TS. From these experiments, we determined the thermal entropy and compared it to the configurational entropy for each of the studied alloys. We applied the rule of mixture to predict molar heat capacities of the alloys at room temperature, which were in good agreement with the Dulong-Petit law. The molar heat capacity of the studied alloys was about three times the universal gas constant, hence the thermal entropy was the major contribution to total entropy. The configurational entropy, due to the chemical composition and number of components, contributes less on the absolute scale. Thermal entropy has approximately equal values for all alloys tested by DSC, while the crystal structure shows a small effect in their order. Finally, the contributions of entropy and enthalpy to the Gibbs free energy was calculated and examined and it was found that the stabilization of the solid solution phase in high entropy alloys was mostly caused by increased configurational entropy.


Author(s):  
V.P. Bondarenko ◽  
O.O. Matviichuk

Detail investigation of equilibrium chemical reactions in WO3–H2O system using computer program FacktSage with the aim to establish influence of temperature and quantity of water on formation of compounds of H2WO4 and WO2(OH)2 as well as concomitant them compounds, evaporation products, decomposition and dissociation, that are contained in the program data base were carried out. Calculations in the temperature range from 100 to 3000 °С were carried out. The amount moles of water added to 1 mole of WO3 was varied from 0 to 27. It is found that the obtained data by the melting and evaporation temperatures of single-phase WO3 are in good agreement with the reference data and provide additionally detailed information on the composition of the gas phase. It was shown that under heating of 1 mole single-phase WO3 up to 3000 °С the predominant oxide that exist in gaseous phase is (WO3)2. Reactions of it formation from other oxides ((WO3)3 and (WO3)4) were proposed. It was established that compound H2WO4 is stable and it is decomposed on WO3 and H2O under 121 °C. Tungsten Oxide Hydrate WO2(OH)2 first appears under 400 °С and exists up to 3000 °С. Increasing quantity of Н2О in system leads to decreasing transition temperature of WO3 into both liquid and gaseous phases. It was established that adding to 1 mole WO3 26 mole H2O maximum amount (0,9044–0,9171 mole) WO2(OH)2 under temperatures 1400–1600 °С can be obtained, wherein the melting stage of WO3 is omitted. Obtained data also allowed to state that that from 121 till 400 °С WO3–Н2O the section in the О–W–H ternary system is partially quasi-binary because under these temperatures in the system only WO3 and Н2O are present. Under higher temperatures WO3–Н2O section becomes not quasi-binary since in the reaction products WO3 with Н2O except WO3 and Н2O, there are significant amounts of WO2(OH)2, (WO3)2, (WO3)3, (WO3)4 and a small amount of atoms and other compounds. Bibl. 12, Fig. 6, Tab. 5.


1969 ◽  
Vol 62 (4) ◽  
pp. 663-670 ◽  
Author(s):  
Lars Carlborg

ABSTRACT Oestrogens administered in lower doses than necessary to induce full cornification of the mouse vagina induce mucification. It was shown previously that the degree of mucification could be estimated by quantitative determination of sialic acids. A suitable parameter for oestrogen assay was the measurement of vaginal sialic acid concentration which exhibited a clear cut dose response curve. Eleven assays of various oestrogens were performed with this method. Their estimated relative potencies were in good agreement with other routine oestrogen assays. A statistically sufficient degree of precision was found. The sensitivity was of the same order, or slightly higher, than the Allen-Doisy test.


1967 ◽  
Vol 13 (6) ◽  
pp. 515-520 ◽  
Author(s):  
Genevieve Farese ◽  
Janice L Schmidt ◽  
Milton Mager

Abstract A completely automated analysis is described for the determination of serum calcium with glyoxal bis (2-hydroxyanil) solution (GBHA). The method is simple and precise, and the data obtained are in good agreement with results obtained by the manual GBHA procedure.


Author(s):  
Emre Kahramanoglu ◽  
Silvia Pennino ◽  
Huseyin Yilmaz

The hydrodynamic characteristics of the planing hulls in particular at the planing regime are completely different from the conventional hull forms and the determination of these characteristics is more complicated. In the present study, calm water hydrodynamic characteristics of planing hulls are investigated using a hybrid method. The hybrid method combines the dynamic trim and sinkage from the Zarnick approach with the Savitsky method in order to calculate the total resistance of the planing hull. Since the obtained dynamic trim and sinkage values by using the original Zarnick approach are not in good agreement with experimental data, an improvement is applied to the hybrid method using a reduction function proposed by Garme. The numerical results obtained by the hybrid and improved hybrid method are compared with each other and available experimental data. The results indicate that the improved hybrid method gives better results compared to the hybrid method, especially for the dynamic trim and resistance. Although the results have some discrepancies with experimental data in terms of resistance, trim and sinkage, the improved hybrid method becomes appealing particularly for the preliminary design stage of the planing hulls.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3567
Author(s):  
Beata Szymanska ◽  
Zenon Lukaszewski ◽  
Beata Zelazowska-Rutkowska ◽  
Kinga Hermanowicz-Szamatowicz ◽  
Ewa Gorodkiewicz

Human epididymis protein 4 (HE4) is an ovarian cancer marker. Various cut-off values of the marker in blood are recommended, depending on the method used for its determination. An alternative biosensor for HE4 determination in blood plasma has been developed. It consists of rabbit polyclonal antibody against HE4, covalently attached to a gold chip via cysteamine linker. The biosensor is used with the non-fluidic array SPRi technique. The linear range of the analytical signal response was found to be 2–120 pM, and the biosensor can be used for the determination of the HE4 marker in the plasma of both healthy subjects and ovarian cancer patients after suitable dilution with a PBS buffer. Precision (6–10%) and recovery (101.8–103.5%) were found to be acceptable, and the LOD was equal to 2 pM. The biosensor was validated by the parallel determination of a series of plasma samples from ovarian cancer patients using the Elecsys HE4 test and the developed biosensor, with a good agreement of the results (a Pearson coefficient of 0.989). An example of the diagnostic application of the developed biosensor is given—the influence of ovarian tumor resection on the level of HE4 in blood serum.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2792
Author(s):  
Wieslaw Lyskawinski ◽  
Wojciech Szelag ◽  
Cezary Jedryczka ◽  
Tomasz Tolinski

The paper presents research on magnetic field exciters dedicated to testing magnetocaloric materials (MCMs) as well as used in the design process of magnetic refrigeration systems. An important element of the proposed test stand is the system of magnetic field excitation. It should provide a homogeneous magnetic field with a controllable value of its intensity in the MCM testing region. Several concepts of a magnetic circuit when designing the field exciters have been proposed and evaluated. In the MCM testing region of the proposed exciters, the magnetic field is controlled by changing the structure of the magnetic circuit. A precise 3D field model of electromagnetic phenomena has been developed in the professional finite element method (FEM) package and used to design and analyze the exciters. The obtained results of the calculations of the magnetic field distribution in the working area were compared with the results of the measurements carried out on the exciter prototype. The conclusions resulting from the conducted research are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document