scholarly journals Evaluation of efficiency of controlled-release N fertiliser on tartary buckwheat production

Author(s):  
Xin Zhao ◽  
Baolin Zhang ◽  
Sancai Liu ◽  
Xiushi Yang

To provide reference for scientific management of nitrogen (N) fertiliser on tartary buckwheat, the effects of the mixed application of controlled-release N fertiliser (a kind of thermoplastic polymer-coated urea types that are characterised by a semi-permeable membrane) and common urea was studied in the main tartary buckwheat production area in China. In 2018 and 2019, a two-year field experiment was conducted a randomised block design with five treatments: (1) no nitrogen fertilisation (CK); (2) 100% N from common urea (T1); (3) 15% N from controlled-released urea fertiliser (plastic coated) + 85% N from common urea (T2); (4) 30% N from controlled-released fertiliser + 70% N from urea (T3); (5) 45% N from controlled-released fertiliser + 55% N of urea (T4). The N fertilisation rate was 90 kg N/ha in all fertilisation treatments. The results showed: (1) the mixed application of controlled-release N fertiliser and common urea was conductive to enhance the yield, dry mass, N uptake and apparent N fertiliser efficiency (NFE), compared with a single application of common urea. In two seasons, NFE was 38.6% (T1), 48.6% (T2), 53.6% (T3) and 53% (T4), separately; (2) the mixed application of controlled-release N fertiliser and common urea could significantly increase the soil inorganic N content in the soil surface layer and decreased the leaching loss of N; (3) with the increasing ration of controlled-release N fertiliser, the tendency of increasing N content of crop uptake and soil residual and decreasing rate of N loss and N surplus was visible. Overall, considered the indicators of grain yield, input cost, N utilisation and N balance, the suitable N fertilisation mode for tartary buckwheat production is the mixed application of 30% controlled-release N fertiliser and 70% common urea when 90 kg N/ha is applied.  

2019 ◽  
Vol 5 (02) ◽  
pp. 242-248
Author(s):  
V. Namdeo ◽  
N. G. Mitra ◽  
S. R. Jakhar ◽  
R. K. Sahu

Field experiments were conducted to Influence of different levels of nitrogen and Azospirillum inoculation on direct-seeded rice in a Vertisol, during kharif season of 2015 at Department of Soil Science and Agricultural Chemistry, JNKVV, Jabalpur. The experiment was laid out under randomized block design (RBD) with 3 replications and 8 treatments namely (unfertilized+uninoculated (UFUI), recommended dose of nitrogen 50%+uninoculated (RDN50%+UI), RDN75%+UI, RDN100%+UI, UF+Azospirillum (UF+Azosp.,), RDN50%+Azosp., RDN75%+Azosp and RDN100%+Azosp.,). It was observed that significant improvement was noticed in yield attributes and soil properties. The response from the treatment of RDN100% +Azosp., was found statistically best to increase available nitrogen (N) content in soil at 45 DAS and at harvest of the crop by 29% and 27%, respectively and N content in the plant, grain and straw by 46%, 50% and 55%, respectively over the control of UFUI. Similarly, trend was significantly enhanced total N uptake by crop with 129% over the control of UFUI. While, same treatment combination increasing azospiral population in rhizospheric soil at 45 DAS, 65 DAS and at harvest by 2.28, 2.07 and 2.05 log folds, respectively over the control of UFUI and enhanced yield attributes and yields of grain and straw of rice with 113 and 58%, respectively over the control of UFUI. While the treatment RDN100%+Azosp., exhibited numerically higher values but was statistically at par to RDN75%+Azosp.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 249
Author(s):  
Emmanuel Frossard ◽  
Frank Liebisch ◽  
Valérie Kouamé Hgaza ◽  
Delwendé Innocent Kiba ◽  
Norbert Kirchgessner ◽  
...  

New management practices must be developed to improve yam productivity. By allowing non-destructive analyses of important plant traits, image-based phenotyping techniques could help developing such practices. Our objective was to determine the potential of image-based phenotyping methods to assess traits relevant for tuber yield formation in yam grown in the glasshouse and in the field. We took plant and leaf pictures with consumer cameras. We used the numbers of image pixels to derive the shoot biomass and the total leaf surface and calculated the ‘triangular greenness index’ (TGI) which is an indicator of the leaf chlorophyll content. Under glasshouse conditions, the number of pixels obtained from nadir view (view from the top) was positively correlated to shoot biomass, and total leaf surface, while the TGI was negatively correlated to the SPAD values and nitrogen (N) content of diagnostic leaves. Pictures taken from nadir view in the field showed an increase in soil surface cover and a decrease in TGI with time. TGI was negatively correlated to SPAD values measured on diagnostic leaves but was not correlated to leaf N content. In conclusion, these phenotyping techniques deliver relevant results but need to be further developed and validated for application in yam.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Temesgen Godebo ◽  
Fanuel Laekemariam ◽  
Gobeze Loha

AbstractBread wheat (Triticum aestivum L.) is one of the most important cereal crops in Ethiopia. The productivity of wheat is markedly constrained by nutrient depletion and inadequate fertilizer application. The experiment was conducted to study the effect of nitrogen (N) and potassium (K) fertilizer rates on growth, yield, nutrient uptake and use efficiency during 2019 cropping season on Kedida Gamela Woreda, Kembata Tembaro Zone Southern Ethiopia. Factorial combinations of four rates of N (0, 23, 46 and 69 kg Nha−1) and three rates of K2O (0, 30 and 60 kg Nha−1) in the form of urea (46–0-0) and murate of potash (KCl) (0-0-60) respectively, were laid out in a randomized complete block design with three replications. The results showed that most parameters viz yield, yield components, N uptake and use efficiency revealed significant differences (P < 0.05) due to interaction effects of N and K. Fertilizer application at the rate of 46 N and 30 kg K ha−1 resulted in high grain yield of 4392 kg ha− 1 and the lowest 1041 from control. The highest agronomic efficiency of N (52.5) obtained from the application of 46 kg N ha−1. Maximum physiological efficiency of N (86.6 kg kg−1) and use efficiency of K (58.6%) was recorded from the interaction of 46 and 30 kg K ha−1. Hence, it could be concluded that applying 46 and 30 kg K ha−1was resulted in high grain yield and economic return to wheat growing farmers of the area. Yet, in order to draw sound conclusion, repeating the experiment in over seasons and locations is recommended.


2017 ◽  
Vol 9 (5) ◽  
pp. 83
Author(s):  
Ngowari Jaja ◽  
Monday Mbila ◽  
Yong Wang

Silvicultural thinning and burning are common management practices that are widely used to address ecosystem problems such as tree stocking and general forest health. However, high-severity fire has variable effects on soils, resulting in damages which are directly or indirectly reflected on the trace metal chemistry of the soil. This study was conducted to evaluate the trace metal variation at the Bankhead National Forest in Northern Alabama following the silvicultural thinning and burning. The experimental site had treatments consisting of two burning patterns and three levels of thinning as part of an overall treatment of three burning patterns and three levels of thinning applied to nine treatment plots to fit a completely randomized block design experiment. Four treatments sites were used for this study and samples were collected from soil profile pits excavated at representative plots within each treatment. The samples were analyzed for trace metals-As, Cu, Ni, Zn and Pb-using Perkin Elmer 2100 ICP-OES. Post treatment samples indicated that the trace metal concentrations generally decreased with soil depth. Copper, Ni, and Zn at the Pre-burn site gradually increased with depth to a maximum concentration at about 50 cm below the soil surface. Arsenic in the surface horizons increased by 156% in the burn-only sites, 54% in the thin-only treatment, 30% for the burn and thin treatments. Such differences were unlikely due to differences in the geochemistry of the parent material, but likely due to anthropogenic activities and possibly the forest management practices in question.


2016 ◽  
Vol 20 (1) ◽  
pp. 45-50
Author(s):  
S Akter ◽  
S Pervin ◽  
KM Iftekharuddaula ◽  
A Akter ◽  
R Yasmeen

Due to over sinking of underground water, scarcity of irrigation water is becoming a threat to the sustainability of irrigated rice production and the concept of aerobic culture appeared prominently. Aerobic rice has the ability to grow under minimum irrigation water and minimum yield reduction occurs when grown under aerobic culture with less water. This experiment aimed to evaluate two advanced aerobic rice lines under transplanted condition in net house. Two advanced lines, IR83140-B-36-B-B and IR83142-B-71-B-B and two check varieties BRRI dhan28 and BRRI dhan29 were grown in three moisture regimes. The moisture regimes included a) continuous standing water (CSW) b) saturated moisture condition (SMC) and c) moisture content at field capacity (FCM). The experimental units, drum containing 110 kg soil, were arranged in randomized complete block design (RCBD) with five replications. Three to four seedlings of forty days were transplanted at the soil surface of each drum. Seedlings were thinned to one plant per genotypes one week after transplanting. Genotype × water interaction showed significant variation in total dry matter production, panicle length, panicle exertion rate, sterility percentage and yield contributing characters. Irrespective of the genotypes, CSW conditions favored to produce maximum number of tiller and panicle. Although BRRI dhan29 gave the highest yield at both CSW and SMC, IR83142-B-71-B-B produced the highest yield at FCM. However, BRRI dhan28 gave similar yield to that of IR83142-B-71-B-B in FCM treated drums.Bangladesh Rice j. 2016, 20(1): 45-50


2018 ◽  
Vol 5 (3) ◽  
pp. 79-88
Author(s):  
Chairunnisak Chairunnisak ◽  
Sugiyanta Sugiyanta ◽  
Edi Santosa

Nitrogen use efficiency (NUE) is a necessitate in order to enhance sustainable rice farming in Indonesia. Thus, objective of present research was to evaluate NUE of local and national Indonesian superior aromatic rice treated with different levels of nitrogen fertilizer (N). Planting plot was arranged using five levels of N as the main plot, i.e; 0, 45, 90, 135 and 180 kg ha-1; and two rice varieties as subplot, i.e: Sigupai Abdya (local) and Inpari 23 Bantul (national). The results showed application 180 kg N ha-1 to Sigupai  Abdya significantly increased the plant height. However, it also postponed the flowering time. Inpari 23 Bantul treated with 180 kg N ha-1 produced the highest number of tillers. Combination of 90 kg N ha-1 with Sigupai Abdya variety significantly reduced the number of empty grains. Sigupai Abdya variety has a higher number of grains per panicle and sampling plot yield than Inpari 23 Bantul, and  dosage 90 kg N ha-1 increases grain yield per clump also sampling plot yield significantly. Nitrogen at 180 kg N ha-1 made Sigupai Abdya variety has high N content and absorption N in primordia phase, and the Inpari 23 Bantul variety had grain with high N content. Nitrogen at 90 kg ha-1 caused Sigupai Abdya variety at primordia phase had NUE higher than Inpari 23 Bantul. This study showed that local variety Sigupai Abdya is suitable for development as rice with low input NKeywords: Aceh aromatic, low input, nitrogen dose, N uptake, Oryza sativa L. 


2012 ◽  
Vol 30 (4) ◽  
pp. 861-870 ◽  
Author(s):  
N.M. Correia ◽  
F.J. Perussi ◽  
L.J.P. Gomes

The aim of this study was to assess the efficacy of S-metolachlor applied in pre-emergence conditions for the control of Brachiaria decumbens, Digitaria horizontalis, and Panicum maximum in sugar cane mechanically harvested without previous burning of the crop (green harvest) with the crop residue either left or not on the soil surface. The experiments were established in the field according to a randomized complete block design with four repetitions in a 7 x 2 split-plot scheme. In the plots, five herbicide treatments were studied (S-metolachlor at 1.44, 1.92, and 2.40 kg ha-1, clomazone at 1.20 kg ha-1, and isoxaflutole at 0.188 kg ha-1), and two control treatments with no herbicide application. In the subplots, the presence or absence of sugar cane crop residue on the soil surface was evaluated. S-metolachlor efficacy was not hampered by either 14 or 20 t ha-1 of sugar cane crop residue on the soil surface. When sugar cane crop residue was covering the soil surface, S-metolachlor at a rate of 1.44 kg ha-1 resulted in weed control similar at their larger rates, where as without the presence of crop residue, S-metolachlor controlled B. decumbens, D. horizontalis, and P. maximum at the rates of 1.92, 1.44, and 1.92 kg ha-1, respectively. The herbicides clomazone and isoxaflutole were effective for the studied species, independently of the crop residue covering the soil surface. S-metolachlor caused no visible injury symptoms to the sugar cane plant. Clomazone and isoxaflutole caused visible injuries to the sugar cane plant. None of the herbicides negatively affected the number of viable culms m² or the culm height and diameter.


2018 ◽  
Vol 45 (3) ◽  
pp. 249
Author(s):  
Solikin ,

Dioscorea is potentially used as staple food to support food security. The research was aimed to determine the effect of stake length and time of  stem twining  on  the growth of Dioscorea sansibarensis Pax. The experiment was conducted  in  Purwodadi Botanic Garden from December 2014 until May 2015 using split plot randomized block design consisted of two factors, i.e. the stake length and time of stem twining. The stake length was the main plot consisted of 150 cm, 100 cm and 50 cm above soil surface and without stake (control). The time of stem twining as subplots, i.e. stem twined early, twined at the time of 4 leaves stage, and twined at 8 leaves stage. Each combination of the treatments was replicated three times. The results showed that there was significant effect on the stake length  and the time of stem twining treatments on the plant growth and yield. The stake  length of 150 cm treatment produced the highest fresh tuber and total plant dry weight, i.e., 257.24 g and 132.77 g per plant, respectively. On the contrary, the plant without stake produced the lowest fresh tuber and  total dry weight of plant, i.e., 112.10 g and 48.65 g per plant, respectively.<br /><br />Keywords: biomass,leaf area, photosyntesis, tuber weight


Sign in / Sign up

Export Citation Format

Share Document