scholarly journals Stevioside and Rebaudioside A – Predominant Ent-Kaurene Diterpene Glycosides of Therapeutic Potential: a Review

2016 ◽  
Vol 34 (No. 4) ◽  
pp. 281-299 ◽  
Author(s):  
E. GUPTA ◽  
S. PURWAR ◽  
S. SUNDARAM ◽  
P. TRIPATHI ◽  
G. RAI

Stevia rebaudiana (Bertoni) is a Paraguayan perennial herb of the family Asteraceae. The leaves contain a great amount of secondary metabolites with a wide range of important biological activities commonly known as steviol glycosides which differ in their molecular configuration, power of sweetness and their taste profile. Out of various steviol glycosides, the main compounds of interest are diterpenoid glycosides of ent-kaurene type extracted from the leaves of this plant as non-toxic, thermally stable, low-calorie natural sweeteners stevioside and rebaudioside A. These glycosides are a high-quality sugar substitute or dietary supplement with diverse applications in the medicinal world along with the food and beverage industry. This review article is aimed at the chemistry of stevioside and rebaudioside A, possible biosynthetic pathways, their metabolism and acceptable daily intake along with a broad spectrum of pharmacological and therapeutic applications.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4090
Author(s):  
Morteza Sheikhalipour ◽  
Behrooz Esmaielpour ◽  
Gholamreza Gohari ◽  
Maryam Haghighi ◽  
Hessam Jafari ◽  
...  

High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs–Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L−1) and Cs–Se NPs (0, 10 and 20 mg L−1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L−1) and Cs–Se NPs (20 mg L−1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L−1) and Cs–Se NPs (20 mg L−1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L−1 TiO2 NPs and 20 mg L−1 Cs–Se could be considered as promising agents in combating high levels of salinity in the case of stevia.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1126-1126
Author(s):  
Brianna Halasa ◽  
Peter Walter ◽  
Hongyi Cai ◽  
Mayte Gonzales ◽  
Mary Walter ◽  
...  

Abstract Objectives Stevia rebaudiana (Bertoni) is a perennial herb native to South America. Its sweetness (∼200–400 times sweeter than sucrose) results from steviol glycosides, particularly stevioside and rebaudioside A. Steviol glycosides are hydrolyzed in the gastrointestinal tract resulting in steviol, which is incompletely absorbed in the colon. In the liver, steviol is converted into its glucuronide derivative and renally excreted. While the use of stevia leaves and crude extracts is still prohibited in the US, steviol glycosides have been ‘generally recognized as safe’ (GRAS) by the Food and Drug Administration (FDA) in 2008. We aimed to determine whether steviol glycosides and glucuronidation products can be found in biosamples collected as early as 2004. Methods In 38 adults, steviol glycosides and glucuronide were analyzed in plasma and in corresponding cerebrospinal fluid samples (CSF); additional 2 persons had only CSF tested. Prenatal exposure was determined in biosamples from 28 individuals (13 amniotic fluid, 15 cord blood). We used ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) utilizing a Thermo Scientific Vanquish UPLC and a Thermo Scientific Altis triple quadruple mass spectrometer with heated electrospray ionization (HESI-II, Thermo Scientific) in negative ion mode (2500 V). Results Seven of 38 adults (18%) had detectable steviol glucuronide concentrations (5 in plasma only, 2 in both plasma and CSF). Maximal concentrations in plasma were 805.4 ng/mL and in CSF 3.3 ng/mL. Two of 13 amniotic fluid samples were positive for steviol glucuronide (max. conc. 93.5 ng/mL) and 1 of 15 cord blood samples contained a trace. In contrast to steviol glucuronide, steviol glycoside could not be measured. Conclusions Steviol glucuronide was found in all types of biosamples (plasma, CSF, amniotic fluid and cord blood), most commonly in plasma (18%). This indicates that exposure to steviol metabolites starts in prenatal life and that these metabolites cross various barriers (e.g., blood-CSF, blood-amniotic fluid). Only samples obtained in and after 2008 were positive for steviol glucuronide, which coincides with the FDA approval. Potential health consequences of exposure to stevia metabolites require further study. Funding Sources N/A.


2017 ◽  
Vol 31 (1) ◽  
pp. 139-144
Author(s):  
Irma Aranda-González ◽  
David Betancur-Ancona ◽  
Luis Chel-Guerrero ◽  
Yolanda Moguel-Ordóñez

Abstract Drying techniques can modify the composition of certain plant compounds. Therefore, the aim of the study was to assess the effect of different drying methods on steviol glycosides in Stevia rebaudiana Bertoni leaves. Four different drying methods were applied to Stevia rebaudiana Bertoni leaves, which were then subjected to aqueous extraction. Radiation or convection drying was performed in stoves at 60°C, whereas shade or sun drying methods were applied at 29.7°C and 70% of relative humidity. Stevioside, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, dulcoside A, and steviolbioside were quantified by a validated HPLC method. Among steviol glycosides, the content (g 100 g−1 dry basis) of stevioside, rebaudioside A, rebaudioside B, and rebaudioside C varied according to the drying method. The total glycoside content was higher in sun-dried samples, with no significant differences compared to shade or convection drying, whereas radiation drying adversely affected the content of rebaudioside A and rebaudioside C (p <0.01) and was therefore a method lowering total glycoside content. The effect of the different drying methods was also reflected in the proportion of the sweetener profile. Convection drying could be suitable for modern food processing industries while shadow or sun drying may be a low-cost alternative for farmers.


2018 ◽  
Vol 46 (2) ◽  
pp. 73-77
Author(s):  
Réka Czinkóczky ◽  
Áron Németh

Abstract Stevia rebaudiana Bertoni is a small, perennial and herbaceous shrub which originated in Paraguay (South America). Stevia rebaudiana is not native to Hungary but its cultivation and consumption may have many benefits, e.g. to reduce blood pressure and as a non-caloric sweetener. Steviol glycosides, mostly stevioside and rebaudioside A, located in the leaves are about 200–300 times sweeter than sucrose. S. rebaudina cultivation in Hungary would offer many opportunities in healthcare and the sweet industry. With the aim of achieving good green biomass yields, the effect of MACC4 autotrophic and heterotrophic algae strains was investigated by testing them as both leaf and soil fertilizers in the soil of Stevia rebaudiana seedlings and in its aqueous rooting experiments. In one of the later set up, the formation of roots was improved by combining the application of red light and algae treatment.


Author(s):  
Supriyadi . ◽  
Siswandono . ◽  
Mochammad Yuwono

<p><strong>Objective</strong><strong>:</strong><strong> </strong>To develop and validate a selective HPLC-ELSD method for determination of steviol glycosides contained in <em>Stevia rebaudiana</em>, mainly stevioside, rebauside A, rebaudioside C, and dulcoside A. <strong></strong></p><p><strong>Methods: </strong>The chromatographic separation of stevioside, rebaudioside A, rebaudioside C, and dulcoside A was achieved using Phenomenex Luna column 250 mm x 4.6 mm i.d. in isocratic system mode with a mobile phase of acetonitrile-water (35: 65). The temperature of nebulization and evaporization of the ELS detector was set at 50 <sup>o</sup>C and 70 <sup>o</sup>C, respectively.<strong></strong></p><p><strong>Results: </strong>The good separation of stevioside, rebaudioside A, rebaudioside C, and dulcoside A was obtained, yielding the resolution of all the analytes more than 1.5. All the validation parameters like specificity, linearity, range, accuracy and precision met the acceptance criteria according to ICH guidelines.<strong></strong></p><p><strong>Conclusion: </strong>The proposed HPLC-ELSD method is simple and sensitive for the simultaneously detection and determination of stevioside, rebaudioside A, rebaudioside C and dulcoside A contained in <em>Stevia rebaudiana</em>. The method was successfully applied for the determination of the samples product of <em>Stevia rebaudiana</em>.</p><p><strong>Keywords: </strong>Stevioside, Rebaudioside A, Rebaudioside C, Dulcoside A, HPLC-ELSD</p>


2016 ◽  
Vol 8 (4) ◽  
pp. 1953-1958
Author(s):  
Neena Kumari ◽  
R. C. Rana ◽  
Y. P. Sharma ◽  
Suresh Kumar

In the present investigation, the dynamics of steviol glycosides (stevioside and rebaudioside-A) of Stevia rebaudiana with their growth stages were studied. The study aimed to examine the best stage of harvesting (month of the year) the crop with respect to maximum accumulation of stevioside and rebaudioside-A content in different plant parts (leaves, green stem and woody stem). The results showed that the maximum stevioside content in leaves (8.55%) was found in June month (vegetative stage). Rebaudioside-A content in leaves (7.00%) was at its peak in August (vegetative stage). Whereas, higher stevioside and rebaudioside-A content was found for green stem (0.93%) and woody stem (0.18%) during September month (flowering stage). Leaves showed maximum yields of stevioside (17.60g) and rebaudioside-A (13.75g) per plant in July month. The study indicated that it is economical to harvest the leaves of S. rebaudiana rather than harvesting whole aerial biomass in vegetative phase (July month).


2017 ◽  
Vol 9 (4) ◽  
pp. 2114-2126 ◽  
Author(s):  
Neena Kumari ◽  
Suresh Kumar

The Stevia genus encompasses about 200 herbs and shrubs species. Stevia rebaudiana, one of the members has gained commercial importance as a natural low calorie sweetener, due to the presence of high con-centration of stevioside and rebaudioside - A (25% to 45% of stevioside content) in the leaves. The major processes involved in the production and quantification of steviol glycosides are extraction, purification and estimation. Various extraction methods have been used for extraction of steviol glycosides in the world. The extraction methods of steviol glycosides mostly differed at the stage of clarification of extracts. The present study is an attempt to summarize the scattered literature and reports on a single podium. Moreover, it also depicts up to date literature regarding numerous extraction, purification and quantitative estimation methods for steviol glycosides


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 221
Author(s):  
Pedram Kashiani ◽  
Ghizan Saleh ◽  
Ridzwan Che Rus

The plant Stevia rebaudiana Bertoni (2n=22) is a native of certain regions of South America particularly in Paraguay. It is a short-term plant and needs three months to complete one cycle of vegetative growth and flowering. With days less than 13 hours in tropical countries, stevia plants flower early, resulting in low yield. In addition, the early bud emergence under the short-day length condition causes the sugar content in stevia leaves to reduce drastically, making them no longer valuable for commercial use. The stevia accessions available in Malaysia today are limited in number and poor in performance, emphasizing the necessity of varietal improvement programs. Assessment of genetic variability, diversity and intrarelationships is an essential step for such breeding programs. This study aims to evaluate agronomic performance of among 21 stevia accessions, namely SRBA-1 to SRBA-21, collected from different origins and to reveal genetic diversity utilizing 52 novel microsatellites. Evaluation of agronomic traits revealed wide range of variation in leaf weight, dry leaf weight, plant height, number of branches, stevioside; rebaudioside A (Reb A), rebaudioside C (Reb C) and total steviol glycosides (TSG). The total genetic diversity detected among the accessions through amplification of the 43 polymorphic microsatellites showed that almost all markers had deviation from Hardy–Weinberg equilibrium (Ho>He). Three distinct heterotic groups were identified among the accessions based on their agronomic performance and molecular characteristics. Crosses among different accessions coming from different heterotic groups can be further used to produce potential stevia variety for plantation in Malaysia.


Author(s):  
Réka Czinkóczky ◽  
Áron Németh

Stevia rebaudiana Bertoni is a perennial shrub from South America that produces steviol glycosides which are 200-300 times sweeter than sugar. Stevioside and rebaudioside A are the main sweetening components of its leaves. Steviol glycosides are diterpenoids whose biosynthetic pathways have four steps in common with gibberellic acid formation. The most important enzyme in the biosynthetic pathway expressed by the gene UGT76G1 is referred to as UDP-glycosyltransferase 76G1. It converts stevioside into rebaudioside A. The former has a bitter aftertaste and is a poorer sweetener but is most abundant. This enzyme can be produced in a next generation recombinant way by Escherichia coli and Saccharomyces cerevisiae. Trichoderma longibrachiatum produces the enzyme β-1,3-glucanase enzyme, which can perform a transglycosylation between stevioside to gain rebaudioside A. In our study, a full-factorial statistical experimental design that applies different glycosyl donors, temperatures, enzyme-to-substrate ratios and pH's as factors in order to achieve higher Reb A ratios in S. rebaudiana extracts after transglycosylation is reported. The presented statistical design was appropriate to indicate relevant and significant factors, providing a good basis for an upcoming experimental design of a real-world optimization.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 543
Author(s):  
Jesús Antonio Rivera-Avilez ◽  
Alfredo Jarma-Orozco ◽  
Marcelo F. Pompelli

The Stevia market is estimated to be USD 1.14 billion in 2028 due to its acceptance in the food and beverage industry. Stevia rebaudiana and its two more relevant edulcorants: stevioside (St) and rebaudioside A (Reb-A) can reach 450-fold sweeter than sucrose. The species is considered a long night plant, promoting flowering and shortening vegetative growth. Thus, to increase the leaf area and St and Reb-A increase, we broke the long night with a short light pulse, here called night interruption (NI). In this study, three NI times and two S. rebaudiana genotypes were tested to promote larger vegetative growth, flowering delay, and higher synthesis of steviol glycosides (SvGly). The main goal of this study was to demonstrate that NI increased net photosynthesis (9% to 20%), the internode length (59%), the leaf area (25%), while delays in 4 to 10 days of the flowering phase, impacting in 17% to 25% more St and Reb-A, respectively. Here we describe an inexpensive flowering delay, elongation of vegetative growth, allowing extended harvesting, which could yield four to five annual harvesting of leaves, increasing the production in 21% to 24% more St and Reb-A yield (kg ha−1).


Sign in / Sign up

Export Citation Format

Share Document