scholarly journals Prospects for rapid bioluminescent detection methods in the food industry – a review

2011 ◽  
Vol 23 (No. 3) ◽  
pp. 85-92 ◽  
Author(s):  
P. Dostálek ◽  
T. Brányik

This review surveys rapid bioluminescent detection techniques applied in food industry and discusses the historical development of the rapid methods. These techniques are divided into two groups: methods based on bioluminescent adenosine triphosphate (ATP) assay, and on bacterial bioluminescence. The advantages and disadvantages of these methods are described. The article provides the bibliography of fluorescent method applications in food samples.    

2013 ◽  
Vol 845 ◽  
pp. 283-286 ◽  
Author(s):  
Malik Abdul Razzaq Al Saedi ◽  
Mohd Muhridza Yaacob

There is a high risk of insulation system dielectric instability when partial discharge (PD) occurs. Therefore, measurement and monitoring of PD is an important preventive tool to safeguard high-voltage equipment from wanton damage. PD can be detected using optical method to increase the detection threshold and to improve the performance of on-line measurement of PD in noise environment. The PD emitted energy as acoustic emission. We can use this emitted energy to detect PD signal. The best method to detect PD in power transformer is by using acoustic emission. Optical sensor has some advantages such as; high sensitivity, more accuracy small size. Furthermore, in on-site measurements and laboratory experiments, it isoptical methodthat gives very moderate signal attenuations. This paper reviews the available PD detection methods (involving high voltage equipment) such as; acoustic detection and optical detection. The advantages and disadvantages of each method have been explored and compared. The review suggests that optical detection techniques provide many advantages from the consideration of accuracy and suitability for the applications when compared to other techniques.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 460
Author(s):  
José Antonio Cebollero ◽  
David Cañete ◽  
Susana Martín-Arroyo ◽  
Miguel García-Gracia ◽  
Helder Leite

Detection of unintentional islanding is critical in microgrids in order to guarantee personal safety and avoid equipment damage. Most islanding detection techniques are based on monitoring and detecting abnormalities in magnitudes such as frequency, voltage, current and power. However, in normal operation, the utility grid has fluctuations in voltage and frequency, and grid codes establish that local generators must remain connected if deviations from the nominal values do not exceed the defined thresholds and ramps. This means that islanding detection methods could not detect islanding if there are fluctuations that do not exceed the grid code requirements, known as the non-detection zone (NDZ). A survey on the benefits of islanding detection techniques is provided, showing the advantages and disadvantages of each one. NDZs size of the most common passive islanding detection methods are calculated and obtained by simulation and compared with the limits obtained by ENTSO-E and islanding standards in the function of grid codes requirements in order to compare the effectiveness of different techniques and the suitability of each one.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3479 ◽  
Author(s):  
Mehdi Hosseinzadeh ◽  
Farzad Rajaei Salmasi

This paper provides an overview of islanding fault detection in microgrids. Islanding fault is a condition in which the microgrid gets disconnected from the microgrid unintentionally due to any fault in the utility grid. This paper surveys the extensive literature concerning the development of islanding fault detection techniques which can be classified into remote and local techniques, where the local techniques can be further classified as passive, active, and hybrid. Various detection methods in each class are studied, and advantages and disadvantages of each method are discussed. A comprehensive list of references is used to conduct this survey, and opportunities and directions for future research are highlighted.


Aerospace ◽  
2019 ◽  
Vol 6 (11) ◽  
pp. 117 ◽  
Author(s):  
Luis Basora ◽  
Xavier Olive ◽  
Thomas Dubot

Anomaly detection is an active area of research with numerous methods and applications. This survey reviews the state-of-the-art of data-driven anomaly detection techniques and their application to the aviation domain. After a brief introduction to the main traditional data-driven methods for anomaly detection, we review the recent advances in the area of neural networks, deep learning and temporal-logic based learning. In particular, we cover unsupervised techniques applicable to time series data because of their relevance to the aviation domain, where the lack of labeled data is the most usual case, and the nature of flight trajectories and sensor data is sequential, or temporal. The advantages and disadvantages of each method are presented in terms of computational efficiency and detection efficacy. The second part of the survey explores the application of anomaly detection techniques to aviation and their contributions to the improvement of the safety and performance of flight operations and aviation systems. As far as we know, some of the presented methods have not yet found an application in the aviation domain. We review applications ranging from the identification of significant operational events in air traffic operations to the prediction of potential aviation system failures for predictive maintenance.


Detection of Anomaly is of a notable and emergent problem into many diverse fields like information theory, deep learning, computer vision, machine learning, and statistics that have been researched within the various application from diverse domains including agriculture, health care, banking, education, and transport anomaly detection. Newly, numbers of important anomaly detection techniques along with diverseness of sort have been watched. The main aim of this paper to come up with a broad summary of the present development on detection of an anomaly, exclusively for video data with mixed types and high dimensionalities, where identifying the anomalous behaviors and event or anomalous patterns is a significant task. The paper expresses the advantages and disadvantages of the detection methods the experiments tried on the publically available benchmark dataset to assess numerous popular and classical methods and models. The objective of this analysis is to furnish an understanding of recent computer vision and machine algorithms methods and also state-of-the-art deep learnings techniques to detect anomalies for researchers. At last, the paper delivered roughly directions for future research on an anomalies detection.


Author(s):  
Virginia Fuochi ◽  
Rosalia Emma ◽  
Pio Maria Furneri

: Nowadays, consumers have become increasingly attentive to human health and the use of more natural products. Consequently, the demand for natural preservatives in the food industry is more frequent. This has led to an intense research to discover new antimicrobial compounds of natural origin which could effectively fight foodborne pathogens. This research aims to safeguard the health of consumers and, above all, to avoid potentially harmful chemical compounds. Lactobacillus is a bacterial genus belonging to the Lactic Acid Bacteria and many strains are defined GRAS, generally recognized as safe. These strains are able to produce substances with antibacterial activity against food spoilage bacteria and contaminating pathogens: the bacteriocins. The aim of this review was to focus on this genus and their capability to produce antibacterial peptides. The review collected all the information of the last few years about bacteriocins produced by Lactobacillus strains, isolated from clinical or food samples, with remarkable antimicrobial activities useful for being exploited in the food field. In addition, the advantages and disadvantages of their use, and the possible ways of improvement for industrial application were described.


2014 ◽  
Vol 77 (4) ◽  
pp. 670-690 ◽  
Author(s):  
MARTIN WIEDMANN ◽  
SIYUN WANG ◽  
LAURIE POST ◽  
KENDRA NIGHTINGALE

The number of commercially available kits and methods for rapid detection of foodborne pathogens continues to increase at a considerable pace, and the diversity of methods and assay formats is reaching a point where it is very difficult even for experts to weigh the advantages and disadvantages of different methods and to decide which methods to choose for a certain testing need. Although a number of documents outline quantitative criteria that can be used to evaluate different detection methods (e.g., exclusivity and inclusivity), a diversity of criteria is typically used by industry to select specific methods that are used for pathogen detection. This article is intended to provide an overall outline of criteria that the food industry can use to evaluate new rapid detection methods, with a specific focus on nucleic acid–based detection methods.


2020 ◽  
Vol 19 (5) ◽  
pp. 88-96
Author(s):  
A. D. Zikiryakhodzhaev ◽  
T. I. Grushina ◽  
M. V. Starkova ◽  
L. P. Kazaryan ◽  
Yu. I. Volkova ◽  
...  

Objective: to provide various methods for sentinel lymph node detection considering their advantages and disadvantages.Material and Methods. The search of the relevant articles published in Pubmed, MedLine, RINTs, etc. database was conducted. 49 publications from 1970 to 2018 were analyzed.Results. Currently, sentinel lymph node biopsy (SLN biopsy) has become a worthy alternative to traditional lymphatic surgery for early breast cancer. SLN biopsy significantly decreases the number of postoperative complications caused by lymphadenectomy and improves the quality of life of cancer patients. So far, a large number of SLN detection techniques have accumulated. Each of these techniques has its own advantages and disadvantages.Conclusion. Despite a large number of SLN detection methods, the question of the optimal technique is currently debatable. 


Author(s):  
Luis Basora ◽  
Xavier Olive ◽  
Thomas Dubot

Anomaly detection is an active area of research with numerous methods and applications. This survey reviews the state-of-the-art of data-driven anomaly detection techniques and their application to the the aviation domain. After a brief introduction to the main traditional data-driven methods for anomaly detection, we review the recent advances in the area of neural networks, deep learning and temporal-logic based learning. We cover especially unsupervised techniques applicable to time series data because of their relevance to the aviation domain, where the lack of labeled data is the most usual case, and the nature of flight trajectories and sensor data is sequential, or temporal. The advantages and disadvantages of each method are presented in terms of computational efficiency and detection efficacy. The second part of the survey explores the application of anomaly detection techniques to aviation and their contributions to the improvement of the safety and performance of flight operations and aviation systems. As far as we know, some of the presented methods have not yet found an application in the aviation domain. We review applications ranging from the identification of significant operational events in air traffic operations to the prediction of potential aviation system failures for predictive maintenance.


Biosensors ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 15 ◽  
Author(s):  
Jasmina Vidic ◽  
Carole Chaix ◽  
Marisa Manzano ◽  
Marc Heyndrickx

Milk is a source of essential nutrients for infants and adults, and its production has increased worldwide over the past years. Despite developments in the dairy industry, premature spoilage of milk due to the contamination by Bacillus cereus continues to be a problem and causes considerable economic losses. B. cereus is ubiquitously present in nature and can contaminate milk through a variety of means from the farm to the processing plant, during transport or distribution. There is a need to detect and quantify spores directly in food samples, because B. cereus might be present in food only in the sporulated form. Traditional microbiological detection methods used in dairy industries to detect spores show limits of time (they are time consuming), efficiency and sensitivity. The low level of B. cereus spores in milk implies that highly sensitive detection methods should be applied for dairy products screening for spore contamination. This review describes the advantages and disadvantages of classical microbiological methods used to detect B. cereus spores in milk and milk products, related to novel methods based on molecular biology, biosensors and nanotechnology.


Sign in / Sign up

Export Citation Format

Share Document