scholarly journals Dimensioning of the bonded lap joint

2010 ◽  
Vol 56 (No. 2) ◽  
pp. 59-68 ◽  
Author(s):  
M. Müller ◽  
D. Herák

Bonded joint is a complex assembly, which creation and following use is limited by a range of factors. The primary factors are the properties of the bonded material and of the adhesive. The stress distribution in the bonded joint is substantially influenced by the bonded joint geometry and by the deformation characteristics. Laboratory experiments are intent on the above mentioned influences for bonded lap joints, which are very used in practice. The geometrical parameters of bonded joints are substantial for the constructional parameters and for costs determination. At the lower lapping length the failure of the bonded joint occurs and the maximum loading capacity of the bonded material is not fully utilized. On the contrary when using the lapping length over its optimum value the failure of the bonded material occurs. At the same time the total weight of the bonded assembly increases. Therefore it is important to determine the bonded joint optimum values which secure the reliability and which do not increase the production costs.  

1983 ◽  
Vol 27 ◽  
pp. 251-260 ◽  
Author(s):  
Paul Predecki ◽  
Charles S. Barrett

At the present time there is considerable interest in the use of adhesive bonded joints for structural applications. The design of such joints is based mostly on finite element calculations and failure tests rather than on strain or stress measurements. To our knowledge no measurements have been made of stresses at or near the adhesive/adherend interface (where many bond failures occur) because of difficulties with accessibility. The purpose of this work was therefore to try to make such measurements using X-ray diffraction.The approach taken was to gain access to the bond by making one of the adherends in a single lap joint to be relatively transparent to X-rays and the cither relatively opaque. Incident X-rays then penetrated the first adherend and the adhesive and were diffracted from gains in the second adherend adjacent to the adhesive/adherend interface. Stresses resulting from curing of the adhesive were determined first, after which a load was applied and the stresses redetermined.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Farhad Asgari Mehrabadi

In the first section of this work, a suitable data reduction scheme is developed to measure the adhesive joints strain energy release rate under pure mode-I loading, and in the second section, three types of adhesive hybrid lap-joints, that is, Aluminum-GFRP (Glass Fiber Reinforced Plastic), GFRP-GFRP, and Steel-GFRP were employed in the determination of adhesive hybrid joints strengths and failures that occur at these assemblies under tension loading. To achieve the aims, Double Cantilever Beam (DCB) was used to evaluate the fracture state under the mode-I loading (opening mode) and also hybrid lap-joint was employed to investigate the failure load and strength of bonded joints. The finite-element study was carried out to understand the stress intensity factors in DCB test to account fracture toughness using J-integral method as a useful tool for predicting crack failures. In the case of hybrid lap-joint tests, a numerical modeling was also performed to determine the adhesive stress distribution and stress concentrations in the side of lap-joint. Results are discussed in terms of their relationship with adhesively bonded joints and thus can be used to develop appropriate approaches aimed at using adhesive bonding and extending the lives of adhesively bonded repairs for aerospace structures.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 320-328
Author(s):  
Delin Sun ◽  
Minggao Zhu

Abstract In this paper, the energy dissipation in a bolted lap joint is studied using a continuum microslip model. Five contact pressure distributions compliant with the power law are considered, and all of them have equal pretension forces. The effects of different pressure distributions on the interface stick-slip transitions and hysteretic characteristics are presented. The calculation formulation of the energy dissipation is introduced. The energy dissipation results are plotted on linear and log-log coordinates to investigate the effect of the pressure distribution on the energy distribution. It is shown that the energy dissipations of the lap joints are related to the minimum pressure in the overlapped area, the size of the contact area and the value of the power exponent. The work provides a theoretical basis for further effective use of the joint energy dissipation.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
H. F. M. de Queiroz ◽  
M. D. Banea ◽  
D. K. K. Cavalcanti

AbstractNatural fibre-reinforced composites have attracted a great deal of attention by the automotive industry mainly due to their sustainable characteristics and low cost. The use of sustainable composites is expected to continuously increase in this area as the cost and weight of vehicles could be partially reduced by replacing glass fibre composites and aluminium with natural fibre composites. Adhesive bonding is the preferred joining method for composites and is increasingly used in the automotive industry. However, the literature on natural fibre reinforced polymer composite adhesive joints is scarce and needs further investigation. The main objective of this study was to investigate experimentally adhesively bonded joints made of natural, synthetic and interlaminar hybrid fibre-reinforced polymer composites. The effect of the number of the interlaminar synthetic layers required in order to match the bonded joint efficiency of a fully synthetic GFRP bonded joint was studied. It was found that the failure load of the hybrid jute/glass adherend joints increased by increasing the number of external synthetic layers (i.e. the failure load of hybrid 3-layer joint increased by 28.6% compared to hybrid 2-layer joint) and reached the pure synthetic adherends joints efficiency due to the optimum compromise between the adherend material property (i.e. stiffness and strength) and a diminished bondline peel stress state.


Author(s):  
U. Yuceoglu ◽  
O. Gu¨vendik ◽  
V. O¨zerciyes

In this present study, the “Free Bending Vibrations of a Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint) with a Gap in Mindlin Plates or Panels” are theoretically analyzed and are numerically solved in some detail. The “plate adherends” and the upper and lower “doubler plates” of the “Bonded Joint” system are considered as dissimilar, orthotropic “Mindlin Plates” joined through the dissimilar upper and lower very thin adhesive layers. There is a symmetrically and centrally located “Gap” between the “plate adherends” of the joint system. In the “adherends” and the “doublers” of the “Bonded Joint” assembly, the transverse shear deformations and the transverse and rotary moments of inertia are included in the analysis. The relatively very thin adhesive layers are assumed to be linearly elastic continua with transverse normal and shear stresses. The “damping effects” in the entire “Bonded Joint” system are neglected. The sets of the dynamic “Mindlin Plate” equations of the “plate adherends”, the “double doubler plates” and the thin adhesive layers are combined together with the orthotropic stress resultant-displacement expressions in a “special form”. This system of equations, after some further manipulations, is eventually reduced to a set of the “Governing System of the First Order Ordinary Differential Equations” in terms of the “state vectors” of the problem. Hence, the final set of the aforementioned “Governing Systems of Equations” together with the “Continuity Conditions” and the “Boundary conditions” facilitate the present solution procedure. This is the “Modified Transfer Matrix Method (MTMM) (with Interpolation Polynomials). The present theoretical formulation and the method of solution are applied to a typical “Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint) with a Gap”. The effects of the relatively stiff (or “hard”) and the relatively flexible (or “soft”) adhesive properties, on the natural frequencies and mode shapes are considered in detail. The very interesting mode shapes with their dimensionless natural frequencies are presented for various sets of boundary conditions. Also, several parametric studies of the dimensionless natural frequencies of the entire system are graphically presented. From the numerical results obtained, some important conclusions are drawn for the “Bonded Joint System” studied here.


1953 ◽  
Vol 20 (3) ◽  
pp. 355-364
Author(s):  
R. W. Cornell

Abstract A variation and extension of Goland and Reissner’s (1) method of approach is presented for determining the stresses in cemented lap joints by assuming that the two lap-joint plates act like simple beams and the more elastic cement layer is an infinite number of shear and tension springs. Differential equations are set up which describe the transfer of the load in one beam through the springs to the other beam. From the solution of these differential equations a fairly complete analysis of the stresses in the lap joint is obtained. The spring-beam analogy method is applied to a particular type of lap joint, and an analysis of the stresses at the discontinuity, stress distributions, and the effects of variables on these stresses are presented. In order to check the analytical results, they are compared to photoelastic and brittle lacquer experimental results. The spring-beam analogy solution was found to give a fairly accurate presentation of the stresses in the lap joint investigated and should be useful in analyzing other cemented lap-joint structures.


Author(s):  
VC Beber ◽  
N Wolter ◽  
B Schneider ◽  
K Koschek

For lightweight materials, e.g. aluminium, the definition of proper joining technology relies on material properties, as well as design and manufacturing aspects. Substrate thickness is especially relevant due to its impact on the weight of components. The present work compares the performance of adhesively bonded (AJ) to hybrid riveted-bonded joints (HJ) using aluminium substrates. To assess the lightweight potential of these joining methods, the effect of substrate thickness (2 and 3 mm) on the lap-shear strength (LSS) of single lap joints is investigated. An epoxy-based structural adhesive is employed for bonding, whilst HJs are produced by lockbolt rivet insertion into fully cured adhesive joints. The stiffness of joints increased with an increase of substrate thickness. HJs presented two-staged failure process with an increase in energy absorption and displacement at break. For HJs, the substrate thickness changed the failure mechanism of rivets: with thicker substrates failure occurred due to shear, whereas in thinner substrates due to rivet pulling-through. The LSS of 2 mm and 3 mm-thick AJs is similar. With 2 mm-thick substrates, the LSS of HJs was lower than AJs. In contrast, the highest LSS is obtained by the 3 mm-thick HJs. The highest lightweight potential, i.e. LSS divided by weight, is achieved by the 2 mm-thick AJs, followed by the 3 mm-thick HJs with a loss of ca. 10% of specific LSS.


2019 ◽  
Vol 54 (9) ◽  
pp. 1245-1255 ◽  
Author(s):  
HFM de Queiroz ◽  
MD Banea ◽  
DKK Cavalcanti

The application of adhesively bonded joints in automotive industry has increased significantly in recent years mainly because of the potential for lighter weight vehicles, fuel savings and reduced emissions. The use of composites in making automotive body components to achieve a reduced vehicle mass has also continuously increased. Natural fibre composites have recently attracted a great deal of attention by the automotive industry due to their many attractive benefits (e.g. high strength-to-weight ratio, sustainable characteristics and low cost). However, the literature on natural fibre-reinforced polymer composite adhesive joints is scarce and needs further investigation. The main objective of this study was to evaluate and compare the mechanical performance of adhesively bonded joints made of synthetic- and natural fibre-reinforced polymer composites. Similar and dissimilar single lap joints bonded with a modern tough structural adhesive used in the automotive industry, as well as the epoxy resin AR260 (the same resin used in composite fabrication) were tested. It was found that the average failure loads varied significantly with adhesive material strength and adherend stiffness. Furthermore, it was also observed that failure mode has a significant effect in failure load. The jute-based natural fibre composites joints, both hybrid and purely natural, were superior in strength compared to the sisal-based natural composites joints.


1998 ◽  
Vol 120 (1) ◽  
pp. 106-113 ◽  
Author(s):  
T. Reinikainen ◽  
M. Poech ◽  
M. Krumm ◽  
J. Kivilahti

Solder alloys are commonly tested with shear tests to study their mechanical properties or low-cycle fatigue performance. In this work, the suitability of various shear tests for quantitative solder-joint testing is investigated by means of the finite element method. The stress state and stress distribution in the following well known geometries are studied: the double-lap test, the ring and plug test, the losipescu test, and two single-lap tests. A new test geometry, the grooved-lap test, is introduced and compared to the conventional tests. The results of simulations with an elastic material model in plane-strain indicate that considerable differences in the purity of the state of shear (rε = −ε1/ε3) as well as in the stress distribution in the joint exist among the shear tests. However, simulations with a nonlinear material model show that stress inhomogenities are smoothed by the plastic and creep deformation occurring in the joint. Optical measurements of the deformation of real single-lap and grooved-lap joints show that the single-lap joint rotates slightly during creep, whereas in the grooved-lap joint no rotation can be detected. This confirms the simulation results that in the single-lap test the initially nonuniform stress distribution changes during creep, and in the grooved-lap test the uniform stress distribution remains constant through the test.


Sign in / Sign up

Export Citation Format

Share Document