scholarly journals Changes in nutrient concentration and oxidative metabolism in pecan leaflets at different doses of zinc

2021 ◽  
Vol 67 (No. 1) ◽  
pp. 33-39
Author(s):  
Damaris Leopoldina Ojeda-Barrios ◽  
Martha Irma Balandran-Valladares ◽  
Oscar Cruz-Alvarez ◽  
Ofelia Adriana Hernández-Rodríguez ◽  
Juan Luis Jacobo-Cuellar ◽  
...  

Zinc deficiency limits pecan nut production. The objective of this study was to evaluate changes in nutrient concentration and oxidative metabolism in pecan leaflets in response to the application at different doses of zinc. The foliar concentration of nutrients, leaflet area, total chlorophyll, dry weight (leaflets and root), superoxide dismutase (SOD), hydrogen peroxide, catalase (CAT), guaiacol peroxidase (GP) and antioxidant capacity were evaluated. Statistical analysis indicates that the application of 200 µmol Zn<sup>2+</sup> affected the foliar concentration of N-total (24.50 ± 2.51 g/kg), P (10.34 ± 2.53 g/kg), Fe<sup>2+</sup> (153.33 ± 6.27 mg/kg) and Zn<sup>2+</sup> (42.00 ± 2.84 mg/kg), showing a greater area of the leaflet, total chlorophyll content and dry weight (leaflets and root). Plants treated with 50 µmol Zn<sup>2+</sup> showed a higher level of SOD activity (1.38 ± 0.016 units/min/g), GP (5.56 ± 0.229 nmol glutathione/min/g), and the production of hydrogen peroxide, without exceeding the control. On the other hand, Zn treatments caused a significant decrease in CAT activity. Zn is an essential micronutrient for the growth and development of pecan, which promotes the accumulation of other nutrients. Therefore, its absence affects the generation of oxidative stress with the subsequent activation of the antioxidant defense enzyme system.  

Author(s):  
Alexandr I. Kokorev ◽  
◽  
Yuriy E. Kolupaev ◽  
Maxim A. Shkliarevskyi ◽  
Anna A. Lugovaya ◽  
...  

Polyamines are plant metabolites involved in many processes under physiologically normal and stressful conditions. Cadaverine is one of the least studied plant polyamines. The relationship between its physiological effects and the formation of signaling mediators, in particular, reactive oxygen species (ROS), has hardly been specially studied. The aim of this work was to study the possible protective effect of cadaverine on wheat (Triticum aestivum L.) seedlings under heat stress and its relationship with the formation and detoxification of ROS by antioxidant enzymes. Etiolated seedlings of soft winter wheat variety Doskonala were used in the work. We treated three-day-old seedlings with cadaverine at concentrations ranging from 0.05 to 2.5 mM by adding it to the root incubation medium. In some variants of the experiment, we treated seedlings with a hydrogen peroxide scavenger dimethylthiourea (DMTU - 150 μM), a diamine oxidase inhibitor aminogunidine (1 mM) or an inhibitor NADPH oxidase imidazole (10 μM), as well as the indicated inhibitors in combination with cadaverine. The hydrogen peroxide content and the activity of antioxidant enzymes were determined in the roots of seedlings a certain time after treatment with the studied compounds. One day after the treatment of seedlings with cadaverine, ROS antagonists, and a combination of effectors, the seedlings were subjected to damaging heating in a water thermostat (10 min at 45 °C). 24 h after heating, we assessed the content of the products of lipid peroxidation (LPO) in the roots and, after 3 days, the survival of seedlings. Incubation in the presence of cadaverine increased the resistance of seedlings to damaging heat (See Fig. 1). The highest relative number of surviving seedlings was observed in the variant with 1 mM cadaverine treatment. Under the effect of cadaverine, the content of hydrogen peroxide in the roots increased (See Fig. 2). We observed a noticeable effect 1-4 h after the start of treatment, with a maximum after 2 h. Treatment of seedlings with a scavenger of hydrogen peroxide DMTU removed the manifestation of the effect of an increase in the content of H2 O2 in the roots caused by the action of cadaverine (See Fig. 3). This effect was also completely eliminated by the diamine oxidase inhibitor aminoguanidine and was almost unchanged in the presence of the NADPH oxidase inhibitor imidazole. The effect of heat stress on seedlings caused an increase in the content of the LPO products in them. Treatment with cadaverine markedly reduced this manifestation of oxidative stress. The antioxidant DMTU and the diamine oxidase inhibitor aminoguanidine largely neutralized the protective effect of cadaverine (See Fig. 4a). At the same time, the NADPH oxidase inhibitor imidazole had almost no effect on the manifestation of the effect of cadaverine on the LPO products content in roots. Under the influence of DMTU and aminoguanidine, but not imidazole, the positive effect of cadaverine on the survival of seedlings after damaging heating was also leveled out (See Fig. 4b). The treatment of seedlings with cadaverine caused a change in the activity of antioxidant enzymes in the roots (superoxide dismutase - SOD, catalase, and guaiacol peroxidase) (See Fig. 5). DMTU and aminoguanidine neutralized the effect of cadaverine-induced increase in the activity of catalase and guaiacol peroxidase, but had almost no effect on the increase in SOD activity in roots induced by this diamine (See Fig. 6). The NADPH oxidase inhibitor imidazole did not significantly affect the manifestation of the effect of increasing the activity of antioxidant enzymes when seedlings are treated with cadaverine. We can conclude that one of the signaling mediators involved in the regulation activity of catalase and guaiacol peroxidase and in the induction of heat resistance of wheat seedlings by exogenous cadaverine is hydrogen peroxide, which is formed during the oxidation of cadaverine by diamine oxidase. At the same time, the modification of SOD activity in the roots of wheat seedlings with cadaverine, apparently, can occur without the participation of ROS.


2002 ◽  
Vol 29 (5) ◽  
pp. 643 ◽  
Author(s):  
Rosa M. Rivero ◽  
Juan M. Ruiz ◽  
Pablo C. García ◽  
Luis R. López-Lefebre ◽  
Esteban Sánchez ◽  
...  

The objective of the present work was to determine the effect of thermal stress on oxidative metabolism in Citrullus lanatus [Thomb.] Mansf. cv. Dulce maravilla. Plants were grown for 30 d at two temperatures (10 and 35˚C), at which time we measured the leaf concentration of antioxidant compounds (ascorbate, dehydroascorbate, reduced glutathione, oxidized glutathione) and enzymatic activities [superoxide dismutase (SOD), catalase, guaiacol peroxidase, ascorbate peroxidase, dehydroascorbate reductase and glutathione reductase], as well as total hydrogen peroxide (H2O2) concentration and shoot dry weight. Our results indicate that chilling stress occurred in watermelon plants at 10˚C, while 35˚C is the optimal temperature for this plant. Low temperature stress caused: (i) decreased shoot weight; (ii) accumulation of H2O2; (iii) increased SOD activity; and (iv) decreased enzyme activities associated with detoxifying H2O2. The novelty of this study centres on the fact that so few cold-sensitive species have been examined to date — additional cold-sensitive species need to be studied to determine if there are shared characteristics in terms of how they respond to cold stress. Most studies have examined single antioxidant responses, whereas we conducted a comprehensive examination of many antioxidant responses.


1987 ◽  
Vol 63 (1) ◽  
pp. 292-301 ◽  
Author(s):  
B. R. Pitt ◽  
J. S. Cole ◽  
P. Davies ◽  
C. N. Gillis

We measured pulmonary epithelial permeability by quantifying the disappearance of two water-soluble compounds, [14C]mannitol and [3H]inulin, after their instillation, with and without phorbol myristate acetate (PMA), into gas-filled perfused (50 ml/min) rabbit lungs in situ. Both tracers disappeared in a monoexponential fashion over 30 min with calculated first-order rate constants (control; n = 11) of 0.0008 +/- 0.0002 and 0.0027 +/- 0.0008 min-1 for inulin and mannitol, respectively. The ratio of the rate constants (3.1 +/- 0.5) was not significantly different from the ratio of diffusivities of mannitol:inulin (3.7). Addition of PMA (250 micrograms) significantly (n = 9, P less than 0.05) increased the rate constants for both inulin and mannitol to 0.0024 +/- 0.0007 and 0.0087 +/- 0.0025 min-1, respectively, while not affecting their ratio (4.3 +/- 0.5). Addition of human leukocytes (4–8 X 10(8)/l) to the perfusate did not exacerbate the effect of 250 micrograms PMA (n = 3). The addition of catalase (n = 7) completely inhibited the effect of 250 micrograms PMA. PMA (250 micrograms) did not significantly affect perfusion pressure but increased wet-to-dry weight ratios. Light microscopic histology showed damage to epithelial and endothelial cells after 250 micrograms PMA which was not seen after coinstillation of catalase. Catalase sensitivity of functional and structural effects of PMA suggests that the effect was secondary to production of hydrogen peroxide. Since this effect was noted in lungs not perfused with neutrophils and addition of leukocytes did not exacerbate the increase in permeability, we hypothesize that an undetermined pulmonary cell type was the source of hydrogen peroxide. Finally, we found no evidence for restrictive pores with radii of 0.4–1.4 nm.


2020 ◽  
Vol 63 (9-10) ◽  
pp. 895-912
Author(s):  
Haiyan Song ◽  
Lishan Wei ◽  
Luning Chen ◽  
Han Zhang ◽  
Ji Su

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam Yousif Adam Ali ◽  
Muhi Eldeen Hussien Ibrahim ◽  
Guisheng Zhou ◽  
Nimir Eltyb Ahmed Nimir ◽  
Aboagla Mohammed Ibrahim Elsiddig ◽  
...  

AbstractSalinity one of environmental factor that limits the growth and productivity of crops. This research was done to investigate whether GA3 (0, 144.3, 288.7 and 577.5 μM) and nitrogen fertilizer (0, 90 and 135 kg N ha−1) could mitigate the negative impacts of NaCl (0, 100, and 200 mM NaCl) on emergence percentage, seedling growth and some biochemical parameters. The results showed that high salinity level decreased emergence percentage, seedling growth, relative water content, chlorophyll content (SPAD reading), catalase (CAT) and peroxide (POD), but increased soluble protein content, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The SOD activity was decreased by nitrogen. However, the other measurements were increased by nitrogen. The interactive impact between nitrogen and salinity was significant in most parameters except EP, CAT and POD. The seedling length, dry weight, fresh weight, emergence percentage, POD, soluble protein and chlorophyll content were significantly affected by the interaction between GA3 and salinity. The GA3 and nitrogen application was successful mitigating the adverse effects of salinity. The level of 144.3 and 288.7 μm GA3 and the rate of 90 and 135 kg N ha−1 were most effective on many of the attributes studied. Our study suggested that GA3 and nitrogen could efficiently protect early seedlings growth from salinity damage.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 696
Author(s):  
Reem H. Alzahib ◽  
Hussein M. Migdadi ◽  
Abdullah A. Al Ghamdi ◽  
Mona S. Alwahibi ◽  
Abdullah A. Ibrahim ◽  
...  

Understanding salt tolerance in tomato (Solanum lycopersicum L.) landraces will facilitate their use in genetic improvement. The study assessed the morpho-physiological variability of Hail tomato landraces in response to different salinity levels at seedling stages and recommended a tomato salt-tolerant landrace for future breeding programs. Three tomato landraces, Hail 548, Hail 747, and Hail 1072 were tested under three salinity levels: 75, 150, and 300 mM NaCl. Salinity stress reduced shoots’ fresh and dry weight by 71% and 72%, and roots were 86.5% and 78.6%, respectively. There was 22% reduced chlorophyll content, carotene content by 18.6%, and anthocyanin by 41.1%. Proline content increased for stressed treatments. The 300 mM NaCl treatment recorded the most proline content increases (67.37 mg/g fresh weight), with a percent increase in proline reaching 61.67% in Hail 747. Superoxide dismutase (SOD) activity decreased by 65% in Hail 548, while it relatively increased in Hail 747 and Hail 1072 treated with 300 mM NaCl. Catalase (CAT) activity was enhanced by salt stress in Hail 548 and recorded 7.6%, increasing at 75 and 5.1% at 300 mM NaCl. It revealed a reduction in malondialdehyde (MDA) at the 300 mM NaCl concentration in both Hail 548 and Hail 1072 landraces. Increasing salt concentrations showed a reduction in transpiration rate of 70.55%, 7.13% in stomatal conductance, and 72.34% in photosynthetic rate. K+/Na+ ratios decreased from 56% for 75 mM NaCl to 85% for 300 mM NaCl treatments in all genotypes. The response to salt stress in landraces involved some modifications in morphology, physiology, and metabolism. The landrace Hail 548 may have better protection against salt stress and observed protection against reactive oxygen species (ROS) by increasing enzymatic “antioxidants” activity under salt stress.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 357
Author(s):  
Valentini Maliaka ◽  
Miquel Lürling ◽  
Christian Fritz ◽  
Yvon J.M. Verstijnen ◽  
Elisabeth J. Faassen ◽  
...  

The Prespa Lakes area in Greece—comprised partly of lake Great and lake Lesser Prespa and the Vromolimni pond—has a global importance for biodiversity. Although the waters show regular cyanobacteria blooms, assessments of water quality threats are limited. Samples collected in 2012 revealed scattered and low microcystin (MC) concentrations in Great Prespa (<0.2 μg MC L−1) whereas considerable spatial heterogeneity in both total chlorophyll (2.4–93 µg L−1) and MC concentrations (0.04–52.4 µg MC L−1) was detected in Lesser Prespa. In 2013, there was far less spatial variability of MC concentrations in Lesser Prespa (0.4–1.53 µg L−1), however in 2014, increased concentrations were detected near the lakeshore (25–861 µg MC L−1). In Vromolimni pond the MC concentrations were on average 26.6 (±6.4) µg MC L−1 in 2012, 2.1 (±0.3) µg MC L−1 in 2013 and 12.7 (±12.5) µg MC L−1 in 2014. In 2013, no anatoxins, saxitoxins, nor cylindrospermopsins were detected in Lesser Prespa and Vromolimni waters. Tissue samples from carps, an otter and Dalmatian Pelicans contained 0.4–1.9 µg MC g−1 dry weight. These results indicate that cyanotoxins could be a threat to the ecosystem functions of particularly Lesser Prespa and Vromolimni.


iScience ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 102094
Author(s):  
Rusen Zou ◽  
Aliyeh Hasanzadeh ◽  
Alireza Khataee ◽  
Xiaoyong Yang ◽  
Mingyi Xu ◽  
...  

2009 ◽  
Vol 28 (10) ◽  
pp. 611-617 ◽  
Author(s):  
Betul Catalgol ◽  
Gül Özhan ◽  
Buket Alpertunga

Acrylamide (AA), a widely used industrial chemical, is shown to be neurotoxic, mutagenic and carcinogenic. This study was carried out to investigate the effects of different doses of AA on lipid peroxidation (LPO), haemolysis, methaemoglobin (MetHb) and antioxidant system in human erythrocytes in vitro. Erythrocyte solutions were incubated with 0.10, 0.25, 0.50 and 1.00 mM of AA at 37°C for 1 hour. At the end of the incubation, malondialdehyde (MDA), an end product of LPO, was determined by liquid chromatography (LC) while total glutathione, reduced glutathione (GSH) levels, activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) enzymes and the rates of haemolysis and MetHb were determined by spectrophotometric methods. All of the studied concentrations of AA increased MetHb formation and SOD activity, and induced MDA formation and haemolysis due to the destruction of erythrocyte cell membrane. AA caused a decrease in the activities of GSH-Px, CAT and GSH levels. However, these effects of AA were seen only at higher concentrations than AA intake estimated for populations in many countries. We suggest that LPO process may not be involved in the toxic effects of AA in low concentrations, although the present results showed that the studied concentrations of AA exert deteriorating effects on antioxidant enzyme activities, LPO process and haemolysis.


Sign in / Sign up

Export Citation Format

Share Document