scholarly journals Module-Scale Simulation of Forward Osmosis Module-Part A: Plate-and-Frame

2016 ◽  
Vol 1 (2) ◽  
pp. 249 ◽  
Author(s):  
Muhammad Roil Bilad

In forward osmosis (FO), a semi-permeable membrane separates a concentrated draw and a diluted feed solution. FO has emerges as a promising alternative for various applications. To support further development of FO process, a larger scale optimization is required to accurately envisage the most critical factors to be explored. In this study, we applied a mass-transfer model coupled with the mass conservation and area discretization to simulate the performance of plate-and-frame FO modules (10 sheets of 1x1m). Effects of numerous parameters were simulated: modes, flow orientations (co-, counter- and cross-currents), spacers and spacer properties, membrane parameters and operational parameters. Results show that counter-current flow orientation offers the highest flux with minimum spatial distribution. Module performance can be improved by developing FO membrane through reducing membrane structural (S) parameter and increasing water permeability (A): increasing A-value only significant at low S-value, and vice versa (i.e., for A-value of 1 LMH/atm, S-value must be below 50 µm). Furthermore, inclusion of spacer in the flow channel slightly increases the flux (merely up to 2%). Module performance can also be enhanced by increasing feed flow rate, lowering solute in the feed and increasing solute in the draw solution.

Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 307
Author(s):  
Stavros Kalafatakis ◽  
Agata Zarebska ◽  
Lene Lange ◽  
Claus Hélix-Nielsen ◽  
Ioannis V. Skiadas ◽  
...  

Forward Osmosis (FO) is a promising technology that can offer sustainable solutions in the biorefinery wastewater and desalination fields, via low energy water recovery. However, microbial biomass and organic matter accumulation on membrane surfaces can hinder the water recovery and potentially lead to total membrane blockage. Biofouling development is a rather complex process and can be affected by several factors such as nutrient availability, chemical composition of the solutions, and hydrodynamic conditions. Therefore, operational parameters like cross-flow velocity and pH of the filtration solution have been proposed as effective biofouling mitigation strategies. Nevertheless, most of the studies have been conducted with the use of rather simple solutions. As a result, biofouling mitigation practices based on such studies might not be as effective when applying complex industrial mixtures. In the present study, the effect of cross-flow velocity, pH, and cell concentration of the feed solution was investigated, with the use of complex solutions during FO separation. Specifically, fermentation effluent and crude glycerol were used as a feed and draw solution, respectively, with the purpose of recirculating water by using FO alone. The effect of the abovementioned parameters on (i) ATP accumulation, (ii) organic foulant deposition, (iii) total water recovery, (iv) reverse glycerol flux, and (v) process butanol rejection has been studied. The main findings of the present study suggest that significant reduction of biofouling can be achieved as a combined effect of high-cross flow velocity and low feed solution pH. Furthermore, cell removal from the feed solution prior filtration may further assist the reduction of membrane blockage. These results may shed light on the challenging, but promising field of FO process dealing with complex industrial solutions.


2017 ◽  
Vol 2 (2) ◽  
pp. 211 ◽  
Author(s):  
Muhammad Roil Bilad

Forward osmosis (FO) is an attractive technology that offers advantages especially for treatment of challenging feeds in comparison to other membrane technologies. Substantial developments of membrane material have been shown recently. To support further development of FO process, a larger scale study via membrane module development is required to accurately envisage the most critical factors to be exploited to realize the promises. In this study, we applied a mass-transfer model coupled with the mass conservation and area discretization to simulate the performance of modified spiral-wound (MSW) modules (10 sheets of 1x1m). The study focuses on the spatial flux profile in a full-scale module as function of operational mode: co- vs counter cross current and membrane orientations (active-layer facing feed (ALFS); solution and active layer facing draw solution, (ALDS)). Results show that all modes offer almost similar average flux of about 9-10 L/m2h, but the co-current flows have much higher flux ranges (≈43%). The latter is expected to worsen membrane fouling resistant due to mal distribution in hydraulic loading. An operation with counter current and ALFS and counter current flow is then recommended because it offer similar flux but lower spatial flux ranges (7%).


2017 ◽  
Vol 79 (2) ◽  
Author(s):  
Jeng Yih Law ◽  
Abdul Wahab Mohammad

Forward osmosis (FO) technology has received increasing attention from many researchers since the last decade. It is an osmotically driven membrane process in which water migrates across a semi-permeable membrane from a lower osmotic pressure feed solution to a higher osmotic pressure draw solution. FO technology is often applied as a hybrid system rather than a standalone process. The purpose of this paper is to review the different types of hybrid system configurations employing FO technology for the production of potable/pure water. The integration of FO technology with other processes which include reverse osmosis, crystallisation, membrane bioreactor, nanofiltration, and electrodialysis are presented and described in-depth. With the flourishing of various FO hybrid system configurations, it is believed that FO technology will play a vital role in the water processing industry.  


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Jasir Jawad ◽  
Alaa H. Hawari ◽  
Syed Javaid Zaidi

The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is presented to predict and optimize the membrane flux for the FO process. The ANN model, developed based on an experimental study, is used to predict the membrane flux for the experimental design in order to create the RSM model for optimization. A Box–Behnken design (BBD) is used to develop a response surface design where the ANN model evaluates the responses. The input variables were osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature, and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408, respectively. The weights of the ANN model and the response surface plots were used to optimize and study the influence of the operating conditions on the membrane flux.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasamin Bide ◽  
Marzieh Arab Fashapoyeh ◽  
Soheila Shokrollahzadeh

AbstractForward osmosis (FO) process has been extensively considered as a potential technology that could minimize the problems of traditional water desalination processes. Finding an appropriate osmotic agent is an important concern in the FO process. For the first time, a nonionic surfactant-based draw solution was introduced using self-assemblies of Tween 80 and choline chloride. The addition of choline chloride to Tween 80 led to micelles formation with an average diameter of 11.03 nm. The 1H NMR spectra exhibited that all groups of Tween 80 were interacted with choline chloride by hydrogen bond and Van der Waals’ force. The influence of adding choline chloride to Tween 80 and the micellization on its osmotic activity was investigated. Despite the less activity of single components, the average water flux of 14.29 L m‒2 h‒1 was obtained using 0.15 M of Tween 80-choline chloride self-assembly as draw solution in the FO process with DI water feed solution. Moreover, various concentrations of NaCl aqueous solutions were examined as feed solution. This report proposed a possible preparation of nonionic surfactant-based draw solutions using choline chloride additive with enhanced osmotic activities that can establish an innovative field of study in water desalination by the FO process.


Author(s):  
Kar Cherng Hon ◽  
Chun Yang ◽  
Seow Chay Low

In this paper, an innovative direct power generation technique from salinity gradient is proposed and demonstrated. The basis of this novel method encompasses forward osmosis (FO) and electrokinetic (EK) principles. Tapping the concentration difference between seawater and river fresh water, forward osmosis (FO) is utilized to allow for spontaneously transporting water across a semi-permeable membrane. The flow of water is then directed towards array of microchannels in the form of porous medium where power is produced from the electrokinetical streaming potential. Experimentally, NaCl solution and DI water were used to model as seawater and fresh river water, respectively. Both glass and polymer based porous media and commercial flat sheet FO membranes were employed herein. Results show power density could reach the order of 101W/m2. Having features of ease of fabrication, simple configuration and no mechanical moving parts, this method provides a feasible mean to harvest enormous energy from salinity gradient. Thus the proposed technique could contribute greatly to renewable energy and towards sustainable future.


Author(s):  
Gerardo Gordillo ◽  
Kalyan Annamalai

The animal waste from feedlots (called feedlot biomass, FB) and dairy farms (called dairy biomass, DB) can contribute to surface or ground water contamination and air pollution problems with the release of greenhouse gases (CH4). In the present study, the feasibility of onsite gasification of DB with an air-steam mixture for production of H2 rich syngas (a mixture of H2 and CO) is considered. The composition of gases produced by DB is predicted using a) mass conservation and b) chemical equilibrium for adiabatic systems where heat produced by partial oxidation is used to strip H2 from steam. Coal is used as standard fuel for comparison of gasification performance of DB with coal. A model is developed to estimate the ideal production of CH4, H2, CO, CO2, N2 and H2S, and other compounds are assumed to be in trace amounts. The parameters investigated are equivalence ratio (1 to 10), air-steam ratio (0.1 to 1), and reaction temperature (600–1500 K). With the predicted composition of gases, the HHV of gas mixtures and the energy conversion efficiency are estimated. The predicted results show that higher ERs yield to elevated concentrations of CO and CH4, high HHV mixtures and energy conversion efficiency, and low percentages of H2 and CO2. On the other hand, lower air-steam ratios produce more H2, CO2, and CH4 but less CO under equilibrium or mass conservation methods. The results suggest that it is possible to obtain concentrations of H2 from 0 to 50%, CO from 0 to 45%, and CH4 from 0 to 45% approximately. The current results provide operational parameters for a gasifier fired with DB and a mixture of air and steam as oxidizers. Experiments are currently in progress to determine the actual composition of gases released from gasifier.


2016 ◽  
Vol 6 (4) ◽  
pp. 533-543 ◽  
Author(s):  
W. D. Wang ◽  
M. Esparra ◽  
H. Liu ◽  
Y. F. Xie

This study evaluated the feasibility of forward osmosis (FO) in diluting and reusing the concentrate produced in a reverse osmosis (RO) plant in James City County, VA. Secondary treated wastewater (STW) was used as the feed solution. Findings indicated that pH had slight effects on the water flux of the FO membrane. As the concentration of total dissolved solids (TDS) in the concentrate was diluted from 12.5 to 1.0 g/L or the temperature in the STW decreased from 23 to 10 °C, the membrane flux decreased from 2.2 to 0.59 and 0.81 L/(m2 h), respectively. The FO membrane showed a good performance in the rejection of organic pollutants, with only a small part of the protein-like substances and disinfection byproducts permeating to the diluted concentrate. During an 89-hour continuous operation, water flux decline due to membrane fouling was not observed. Controlling the TDS in the second-stage FO effluent at 1.5 g/L, approximately 8.3% of the pump energy input could be saved. The consumption of groundwater was reduced from 22.7 × 103 to 10.6 × 103 m3/d. FO was proved to be an effective method in both diluting the discharged concentrate and reducing the energy consumption of RO.


2021 ◽  
Vol 324 ◽  
pp. 173-178
Author(s):  
Terence Tumolva ◽  
Kenneth Carmelo Madamba ◽  
Isabelle Gabrielle Nunag ◽  
Vinz Gabriel Villanueva

Current available methods for water desalination are energy intensive, expensive, and not feasible for small-scale applications. As an alternative, hydrogels may be utilized as a draw agent and semi-permeable membrane forward osmosis by acting as both to desalinate water. This study aims to synthesize and characterize hydrogels made from cellulose derivatives and reduced graphene oxide nanofillers in order to desalinate and remove microbes from seawater without requiring a large energy input. The hydrogels are formed by combining carboxymethyl cellulose, hydroxymethyl cellulose, reduced graphene oxide, and water to form a paste which is soaked in a crosslinking solution made of citric acid. Swelling, compression, antimicrobial efficiency and desalination efficiency tests were done. The hydrogel that obtained the highest values has a swelling ratio of 1,447%, compressive strength of 4 bar, desalination efficiency of 30%, and antimicrobial properties.


2015 ◽  
Vol 15 (10) ◽  
pp. 8279-8284 ◽  
Author(s):  
Hee-Man Yang ◽  
Hye Min Choi ◽  
Sung-Chan Jang ◽  
Myeong Jin Han ◽  
Bum-Kyoung Seo ◽  
...  

Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPGMNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.


Sign in / Sign up

Export Citation Format

Share Document