scholarly journals Geophysical research and geotechnical database construction for selecting design parameters of mining systems

2021 ◽  
pp. 111-114
Author(s):  
V. A. Mansurov ◽  
◽  
K. K. Zhakanov ◽  
G. Rafat ◽  
V. I. Mezhelovsky ◽  
...  

A passport to success in mineral mining is the detailed geomechanical information on enclosing rock mass and structure of a mineral deposit. These data are used as a framework for the rock mass stability estimation. These data are taken into account in critical decision-making on mine design, which finally determines the mine safety and performance. The authors review the current methods of acquisition of geotechnical data at the stage of geological exploration. The structural model is constructed for Shiraldzhin gold deposit in Kyrgyzstan. The structural modeling used the data of geophysical measurements in 6 boreholes. It is shown that construction of a geotechnical database helps design future parameters of a mining system. Geophysical borehole investigations have an advantage over the conventional coring techniques in terms of cost and accuracy. The geophysical borehole measurements using a borehole image scanner requires maintenance of borehole parameters: diameter not less than HQ; angle not less 55°; mouth casing down to bedding rocks. Finally, the major requirement is scanning to be accomplished immediately after drilling (within one day depending on rock stability).

2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110343
Author(s):  
Mei Yang ◽  
Yimin Xia ◽  
Lianhui Jia ◽  
Dujuan Wang ◽  
Zhiyong Ji

Modular design, Axiomatic design (AD) and Theory of inventive problem solving (TRIZ) have been increasingly popularized in concept design of modern mechanical product. Each method has their own advantages and drawbacks. The benefit of modular design is reducing the product design period, and AD has the capability of problem analysis, while TRIZ’s expertise is innovative idea generation. According to the complementarity of these three approaches, an innovative and systematic methodology is proposed to design big complex mechanical system. Firstly, the module partition is executed based on scenario decomposition. Then, the behavior attributes of modules are listed to find the design contradiction, including motion form, spatial constraints, and performance requirements. TRIZ tools are employed to deal with the contradictions between behavior attributes. The decomposition and mapping of functional requirements and design parameters are carried out to construct the structural hierarchy of each module. Then, modules are integrated considering the connections between each other. Finally, the operation steps in application scenario are designed in temporal and spatial dimensions. Design of cutter changing robot for shield tunneling machine is taken as an example to validate the feasibility and effectiveness of the proposed method.


2021 ◽  
Vol 11 (8) ◽  
pp. 3351
Author(s):  
Gabor Somodi ◽  
Neil Bar ◽  
László Kovács ◽  
Marco Arrieta ◽  
Ákos Török ◽  
...  

A comprehensive understanding of geological, structural geological, hydrogeological and geotechnical features of the host rock are essential for the design and performance evaluation of surface and underground excavations. The Hungarian National Radioactive Waste Repository (NRWR) at Bátaapáti is constructed in a fractured granitic formation, and Telfer Gold Mine in Australia is excavated in stratified siltstones, sandstones and quartzites. This study highlights relationships between GSI chart ratings and calculated GSI values based on RMR rock mass classification data. The paper presents linear equations for estimating GSI from measured RMR89 values. Correlations between a and b constants were analyzed for different rock types, at surface and subsurface settings.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


Author(s):  
Khaled A. Galal ◽  
Ghassan R. Chehab

One of the Indiana Department of Transportation's (INDOT's) strategic goals is to improve its pavement design procedures. This goal can be accomplished by fully implementing the 2002 mechanistic–empirical (M-E) pavement design guide (M-E PDG) once it is approved by AASHTO. The release of the M-E PDG software has provided a unique opportunity for INDOT engineers to evaluate, calibrate, and validate the new M-E design process. A continuously reinforced concrete pavement on I-65 was rubblized and overlaid with a 13–in.-thick hot-mix asphalt overlay in 1994. The availability of the structural design, material properties, and climatic and traffic conditions, in addition to the availability of performance data, provided a unique opportunity for comparing the predicted performance of this section using the M-E procedure with the in situ performance; calibration efforts were conducted subsequently. The 1993 design of this pavement section was compared with the 2002 M-E design, and performance was predicted with the same design inputs. In addition, design levels and inputs were varied to achieve the following: ( a) assess the functionality of the M-E PDG software and the feasibility of applying M-E design concepts for structural pavement design of Indiana roadways, ( b) determine the sensitivity of the design parameters and the input levels most critical to the M-E PDG predicted distresses and their impact on the implementation strategy that would be recommended to INDOT, and ( c) evaluate the rubblization technique that was implemented on the I-65 pavement section.


Author(s):  
Lei Yu ◽  
William T. Cousins ◽  
Feng Shen ◽  
Georgi Kalitzin ◽  
Vishnu Sishtla ◽  
...  

In this effort, 3D CFD simulations are carried out for real gas flow in a refrigeration centrifugal compressor. Both commercial and the in-house CFD codes are used for steady and unsteady simulations, respectively. The impact on the compressor performance with various volute designs and diffuser modifications are investigated with steady simulations and the analysis is focused on both the diffuser and the volute loss, in addition to the flow distortion at impeller exit. The influence of the tongue, scroll diffusion ratio, diffuser length, and cross sectional area distribution is examined to determine the impact on size and performance. The comparisons of total pressure loss, static pressure recovery, through flow velocity, and the secondary flow patterns for different volute designs show that the performance of the centrifugal compressor depends upon how well the scroll portion of the volute collects the flow from the impeller and achieves the required pressure rise with minimum flow losses in the overall diffusion process. Finally, the best design is selected based on compressor stage pressure rise and peak efficiency improvement. An unsteady simulation of the full wheel compressor stage was carried out to further examine the interaction of impeller, diffuser and the volute. The unsteady flow interactions are shown to have a major impact on the performance of the centrifugal stage.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2163 ◽  
Author(s):  
Sanghyun Yoon ◽  
Jinhwan Kim ◽  
Kyung-Ho Cho ◽  
Young-Ho Ko ◽  
Sang-Kwon Lee ◽  
...  

In this study, inertial mass-based piezoelectric energy generators with and without a spring were designed and tested. This energy harvesting system is based on the shock absorber, which is widely used to protect humans or products from mechanical shock. Mechanical shock energies, which were applied to the energy absorber, were converted into electrical energies. To design the energy harvester, an inertial mass was introduced to focus the energy generating position. In addition, a spring was designed and tested to increase the energy generation time by absorbing the mechanical shock energy and releasing a decreased shock energy over a longer time. Both inertial mass and the spring are the key design parameters for energy harvesters as the piezoelectric materials, Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics were employed to store and convert the mechanical force into electric energy. In this research, we will discuss the design and performance of the energy generator system based on shock absorbers.


Author(s):  
Yuri I. Biba ◽  
Zheji Liu ◽  
D. Lee Hill

A complete effort to redesign the aerodynamic characteristics of a single-stage pipeline compressor is presented. The components addressed are the impeller, diffuser region, and the volute. The innovation of this effort stems from the simultaneous inclusion of both the noise and aerodynamic performance as primary design parameters. The final detailed flange-to-flange analysis of the new components clearly shows that the operating range is extended and the tonal noise driven by the impeller is reduced. This is accomplished without sacrificing the existing high efficiency of the baseline machine. The body of the design effort uses both Computational Fluid Dynamics (CFD) and vibro-acoustics technology. The predictions are anchored by using the flange-to-flange analysis of the original design and its experimental performance data. By calculating delta corrections and assuming that these deltas are approximately the same for the new design, the expected performance is extrapolated.


2020 ◽  
Vol 12 (3) ◽  
pp. 444-453
Author(s):  
Igor SOKOLOV ◽  
◽  
Yury ANTIPIN ◽  
Artem ROZHKOV ◽  
◽  
...  

The purpose work. Substantiation and selection of a safe and effective option of mining technology of the experimental block in the pilot industrial mining of the Skalistoe deposit. Method of research. Analysis and synthesis of project solutions, experience in mining inclined low-thickness ore bodies, economic and mathematical modeling and optimization of the parameters of options mining systems in the conditions of the experimental block. Results of research. As a result of research it was established: - the sublevel caving mining system with the parameters adopted in the project does not guarantee the completeness of the extraction of reserves and the effectiveness of mining operations. Project indicators of extraction by sublevel caving technology with frontal ore drawing are overestimated and difficult to achieve in these geological and technical conditions (combination of low thickness and angle of ore body); project scheme for the delivery and transportation of rock mass seems impractical due to the significant volume of heading workings and increased transportation costs; - eight technically rational options of various mining systems were constructed, most relevant to the geological and technical conditions of the deposit. Five variants of the sublevel chamber system and pillar caving, a project variant of sublevel caving technology with frontal ore drawing and two options flat-back cut-and-fill system were considered; - for mining the Skalistoe deposit, according to the results of economic and mathematical modeling, optimal by the criterion of profit per 1 ton of balance reserves of ore is a option of the technology of chamber extraction with dual chambers, frontal drawing of ore by remote-controlled load-haul-dump machine and subsequent pillars caving, as having the greatest profit; - the calculations justified stable spans of dual chambers (25.3 m) and the width of panel pillars (3 m). With an allowable span of 25.3 m, the roof of the dual chambers will be stable with a safety factor of 1.41, and a panel pillar with a width of 3 m has a sufficient margin of safety (more than 1.6) in the whole range of ore body thickness variation; - the proposed scheme of delivery and transportation of rock mass, which allows to reduce the volume of tunnel works by 26% and the average length of transportation by 10-15% compared with the project. Findings. Developed in the process of modernization the technology sublevel chamber system with double-chamber, compared with the project technology, it is possible to significantly increase the efficiency of mining of the low thickness deposit of rich ores Skalistoe by reducing the specific volume of preparatory-rifled work by 34%, the cost of mined ore by 12%, losses and ore dilution – by 2 and 2.9 times, respectively.


2021 ◽  
Vol 7 (1) ◽  
pp. 49-58
Author(s):  
Mohammad Awwad

Background: Water floods have a considerable impact on roads sustainability by creating roads cracks, breaking down and holes, and failure for some other parts. The existence of good drainage system serviced the road and draining the water resulted from rain floods is crucial. These significant influences can be classified as positive or negative, low, moderate, or high. Aim and Objectives: This paper discusses the water floods and rainfall effects on roads and highways in Jordan as well as the drainage system on road sustainability and performance. The main aim of this paper is to investigate and analyse water as rainfall or floods affecting roads and highways in Jordan. The importance of this study is represented by studying and analysing the effects of rainfall and water floods on road construction and sustainability in Jordan after the latest high rain sizes of this winter and water floods, which affect the roads and highways in a good percentage. The other importance of the study is represented in offering solutions to problems caused by the environmental effects, specially floods and high rainfall rates. Methodology: all data and information about status of Jordanian roads during winter and floods are collected from real cases of about 40 main and semi-main roads in Jordan.  Results and Conclusions: A good drainage system and repair operations and maintenance generally have a positive impact on road sustainability and survival age. The effects of slopes of the road and surface of the asphalt, rainfall intensity, and water flow velocity on drainage length and drainage time and water depth are discussed here. Doi: 10.28991/cej-2021-03091636 Full Text: PDF


2018 ◽  
Vol 7 (4) ◽  
pp. 1-27
Author(s):  
Renas K.M. Sherko ◽  
Yusuf Arayici ◽  
Mike Kagioglou

A significant amount of energy is consumed by buildings due to ineffective design decisions with little consideration for energy efficiency. Yet, performance parameters should be considered during the early design phase, which is vital for improved energy performance and lower CO2 emissions. BIM, as a new way of working methodology, can help for performance-based design. However, it is still infancy in architectural practice about how BIM can be used to develop energy efficient design. Thus, the aim is to propose a strategic framework to guide architects about how to do performance-based design considering the local values and energy performance parameters. The research adopts a multi case study approach to gain qualitative and quantitative insights into the building energy performance considering the building design parameters. The outcome is a new design approach and protocol to assist designers to successfully use BIM for design optimization, PV technology use in design, rules-based design and performance assessment scheme reflecting local values.


Sign in / Sign up

Export Citation Format

Share Document