Synthesis of High-Precision Missile Homing System Using Proportional Guidance Method

2020 ◽  
Vol 21 (4) ◽  
pp. 242-248
Author(s):  
Do Quang Thong

Modern air targets are characterized by low visibility, high maneuverability and high survivability. In addition, for some specific targets, for instance ballistic missiles, in order to defeat them the missile need tobe guided and carried out direct hit, i.e. "hit to kill". Therefore, in this paper, we present a high-precision missile homing system (MHS) using the proportional guidance method for firing at the highly maneuverable targets. Specifically, we propose a parametric optimization method for choosing a set of optimal parameters of the missile homing system for each dynamic parameter set of the missile. In addition, the paper gives the recommendations of choosing the initial conditions for the synthesis of missile homing system. In our experience, we should choose the small initial condition for synthesizing the missile homing system. Finally, the article also investigates the influence of systematic error in determining the speed, normal acceleration of missiles and the angular velocity of the line of sight of the missile and target on the accuracy of the missile homing system. We implement the proposed missile homing system and the parametric optimization method in Matlab. The experimental results illustrate that, using proposed system and the parametric optimization method, the missile can defeat the modern air targets with low visibility, high maneuverability and high survivability. 

2021 ◽  
Vol 22 (7) ◽  
pp. 365-373
Author(s):  
Quang Thong Do

The proportional guidance method-based missile homing systems (MHS) have been widely used the real-world environments. In these systems, in order to destroy the targets at different altitudes, a normal acceleration stabilization system (NASS) is often utilized. Therefore, the MHS are complex and the synthesis of these systems are a complex task. However, it is necessary to synthesize NASS during the synthesis of the MHS. To simplify the synthesis process, a linear model of the NASS is used. In addition, we make use of the available commands in Control System Toolbox in MATLAB. Because the Toolbox has the commands to describe the transfer function, determine the stability gain margin, and the values of the transient respond of the linear automatic systems. Thus, this article presents two methods for synthesizing the missile homing systems, including (i) a method for synthesizing the MHS while ensuring the permissible stability gain margin of the NASS, and (ii) a method for synthesizing the MHS while ensuring the permissible stability margin of the NASS by overshoot. These techniques are very easy to implement using MATLAB commands. The synthesis of the proposed MHS is carried out by the parametric optimization method. To validate the performance of the proposed techniques, we compare them withthe MHS synthesized by ensuring the stability margin of the NASS bythe oscillation index. The results show that, two our proposed methods and the existing method provide the same results in terms of high-precision. Nevertheless, the proposed methods are simple and faster than the conventional method. The article also investigates the effect of gravity, longitudinal acceleration of the rocket, andblinding of the homing head on the accuracy of the synthesized MHS. The results illustrate that they have a little effect on its accuracy.


2020 ◽  
Vol 10 (22) ◽  
pp. 8249
Author(s):  
Mengqi Shao ◽  
Lei Zhang ◽  
Xuezhi Jia

For a lightweight space camera installed vertically with a satellite platform, due to the different conditions between ground and orbit, the relative deformation between the camera and the satellite platform results in a drift of the camera line of sight (LOS), which affects the imaging quality. This paper proposed an optimization method for the spaceborne connecting structure considering the camera LOS drift. By using a variable density topology optimization method, the configuration of the connecting structure was obtained. Based on the configuration, the sensitivity of its size parameters to the system’s performance was analyzed. Analysis data showed that the size parameters have an obvious influence on the camera LOS shift. In order to obtain the optimal combination of size parameters, a multi-objective parametric optimization model was established. Finally, engineering analysis of the optimized structure showed that the system performances meet the design requirements of the satellite, and the lightweight ratio of the connecting structure reaches 54%. This study provides a reference for the design of other similar structures for space cameras.


Author(s):  
B.S. Donenbaev ◽  
K.T. Sherov ◽  
M.R. Sikhimbayev ◽  
B.N. Absadykov ◽  
N.Zh. Karsakova

The authors developed a special design of a rotary friction tool with a self-rotating cup cutter for rotary friction boring of large holes. This paper presents the results of parametric optimization of stressed components of the rotary friction tool by virtual experiments in ANSYS WB. The authors predicted the cutting force components at the worst position of the cup cutter, which was 20 degrees as contact forces in the process of boring a large diameter hole, and built a design model. Using the Johnson-Cook model as the failure criterion for the elements of the mesh, projections of the cutting forces resulting from the hole processing were obtained. The relation between input and output parameters (stresses) is established, optimization criteria are specified, and optimal parameters of the tool stresses components are chosen. It was also found that the averaged values of the force at the initial moment (cutting into the workpiece) change linearly, then becoming practically constant. The idea of parametric optimization consisted in carrying out several virtual experiments, in which the possible range of variation of the basic dimensions was indicated and the optimization criteria were set, the optimal parameters of the tool design were selected from the presented candidates. The optimization method bypasses the design cycle, which is costly and time-consuming due to prototype testing and subsequent refinement.


2002 ◽  
Vol 716 ◽  
Author(s):  
Victor I. Kol'dyaev

AbstractIt is accepted that surface Ge atoms are considered to be responsible for the surface B segregation process. A set of original experiments is carried out. A main observation from the B and Ge profiles grown at different conditions shows that at certain conditions B is taking initiative and determine the Ge surface segregation process. basic assumptions are suggested to self-consistently explain these original experimental features and what is observed in the literature. These results have a strong implication for modeling the B diffusion in Si1-xGex where the initial conditions should be formulated accounting for the correlation in B and Ge distribution. A new assumption for the initial condition to be “all B atoms are captured by Ge” is regarded as a right one implicating that there is no any transient diffusion representing the B capturing kinetics.


2019 ◽  
Vol 13 ◽  
Author(s):  
Yan Zhang ◽  
Ren Sheng

Background: In order to improve the efficiency of fault treatment of mining motor, the method of model construction is used to construct the type of kernel function based on the principle of vector machine classification and the optimization method of parameters. Methodology: One-to-many algorithm is used to establish two kinds of support vector machine models for fault diagnosis of motor rotor of crusher. One of them is to obtain the optimal parameters C and g based on the input samples of the instantaneous power fault characteristic data of some motor rotors which have not been processed by rough sets. Patents on machine learning have also shows their practical usefulness in the selction of the feature for fault detection. Results: The results show that the instantaneous power fault feature extracted from the rotor of the crusher motor is obtained by the cross validation method of grid search k-weights (where k is 3) and the final data of the applied Gauss radial basis penalty parameter C and the nuclear parameter g are obtained. Conclusion: The model established by the optimal parameters is used to classify and diagnose the sample of instantaneous power fault characteristic measurement of motor rotor. Therefore, the classification accuracy of the sample data processed by rough set is higher.


2005 ◽  
Vol 133 (11) ◽  
pp. 3148-3175 ◽  
Author(s):  
Daryl T. Kleist ◽  
Michael C. Morgan

Abstract The 24–25 January 2000 eastern United States snowstorm was noteworthy as operational numerical weather prediction (NWP) guidance was poor for lead times as short as 36 h. Despite improvements in the forecast of the surface cyclone position and intensity at 1200 UTC 25 January 2000 with decreasing lead time, NWP guidance placed the westward extent of the midtropospheric, frontogenetically forced precipitation shield too far to the east. To assess the influence of initial condition uncertainties on the forecast of this event, an adjoint model is used to evaluate forecast sensitivities for 36- and 48-h forecasts valid at 1200 UTC 25 January 2000 using as response functions the energy-weighted forecast error, lower-tropospheric circulation about a box surrounding the surface cyclone, 750-hPa frontogenesis, and vertical motion. The sensitivities with respect to the initial conditions for these response functions are in general very similar: geographically isolated, maximized in the middle and lower troposphere, and possessing an upshear vertical tilt. The sensitivities are maximized in a region of enhanced low-level baroclinicity in the vicinity of the surface cyclone’s precursor upper trough. However, differences in the phase and structure of the gradients for the four response functions are evident, which suggests that perturbations could be constructed to alter one response function but not necessarily the others. Gradients of the forecast error response function with respect to the initial conditions are used in an iterative procedure to construct initial condition perturbations that reduce the forecast error. These initial condition perturbations were small in terms of both spatial scale and magnitude. Those initial condition perturbations that were confined primarily to the midtroposphere grew rapidly into much larger amplitude upper-and-lower tropospheric perturbations. The perturbed forecasts were not only characterized by reduced final time forecast error, but also had a synoptic evolution that more closely followed analyses and observations.


1996 ◽  
Vol 118 (4) ◽  
pp. 733-740 ◽  
Author(s):  
Eungsoo Shin ◽  
D. A. Streit

A new spring balancing technique, called a two-phase optimization method, is presented. Phase 1 uses harmonic synthesis to provide a system configuration which achieves an approximation to a desired dynamic system response. Phase 2 uses results of harmonic synthesis as initial conditions for dynamic system optimization. Optimization techniques compensate for nonlinearities in machine dynamics. Example applications to robot manipulators and to walking machine legs are presented and discussed.


2018 ◽  
Vol 36 (1) ◽  
pp. 334-355
Author(s):  
Yuan Li ◽  
J. Zhang ◽  
Yudong Zhong ◽  
Xiaomin Shu ◽  
Yunqiao Dong

Purpose The Convolution Quadrature Method (CQM) has been widely applied to solve transient elastodynamic problems because of its stability and generality. However, the CQM suffers from the problems of huge memory requirement in case of direct implementation in time domain or CPU time in case of its reformulation in Laplace domain. The purpose of this paper is to combine the CQM with the pseudo-initial condition method (PICM) to achieve a good balance between memory requirement and CPU time. Design/methodology/approach The combined methods first subdivide the whole analysis into a few sub-analyses, which is dealt with the PICM, namely, the results obtained by previous sub-analysis are used as the initial conditions for the next sub-analysis. In each sub-analysis, the time interval is further discretized into a number of sub-steps and dealt with the CQM. For non-zero initial conditions, the pseudo-force method is used to transform them into equivalent body forces. The boundary face method is employed in the numerical implementation. Three examples are analyzed. Results are compared with analytical solutions or FEM results and the results of reformulated CQM. Findings Results demonstrate that the computation time and the storage requirement can be reduced significantly as compared to the CQM, by using the combined approach. Originality/value The combined methods can be successfully applied to the problems of long-time dynamic response, which requires a large amount of computer memory when CQM is applied, while preserving the CQM stability. If the number of time steps is high, then the accuracy of the proposed approach can be deteriorated because of the pseudo-force method.


2021 ◽  
Vol 3 (2) ◽  
pp. 1-15
Author(s):  
Norani Yanuar Subandi ◽  
Hablil Warid ◽  
Sulistyaningsih

The aim of this research were to describe the implementation of Using G - Suite Docs to Improve Students’ Writing Ability at SMA Negeri 1 Batuan, Sumenep and to find out  the achievement of student’s writing ability in Using G - Suite at SMA Negeri 1 Batuan, Sumenep. The approach used in this research was classroom action research. Data collection tools in this study were observation sheets of learning management through G-Suite Docs media, student activity observation sheets and tests. The objects of this study were 25 students of class XII IPA 1 SMA Negeri 1 Batuan even semester of the 2020/2021 school year. The research showed that the result of implementing of using G-Suite Docs showed that the students were more enthusiastic in writing discussion text and all students could respond to their group work by commenting on the process in writing. Moreover, the students achievement from the initial conditions up to second cycle. The average of initial condition was 66.6 changed to be 79.64 or increased 80% with the result of completeness reaching 92%.   Keywords: G - Suite Docs, Writing ability, Discussion Text


Sign in / Sign up

Export Citation Format

Share Document