Appearance and Basic Functional Elements of an Interactive Multimodal Hybrid Conformal Microsystem for Real-Time Transdermal Biomedical Monitoring and Correction of the Body State

2021 ◽  
Vol 23 (6) ◽  
pp. 294-299
Author(s):  
I.K. Khmelnitskiy ◽  
◽  
V.V. Luchinin ◽  
K.G. Gareev ◽  
N.V. Andreeva ◽  
...  

The constructive and technological solutions of a new generation interactive multimodal hybrid conformal sensor-correcting microsystem are presented. The functional modules of the microsystem made in the form of an ultrathin bracelet or patch with the possibility of fixation on human skin are considered. The advantages of the proposed microsystem, its purpose and possible applications are discussed.

Author(s):  
Nora Goldschmidt ◽  
Barbara Graziosi

The Introduction sheds light on the reception of classical poetry by focusing on the materiality of the poets’ bodies and their tombs. It outlines four sets of issues, or commonplaces, that govern the organization of the entire volume. The first concerns the opposition between literature and material culture, the life of the mind vs the apprehensions of the body—which fails to acknowledge that poetry emerges from and is attended to by the mortal body. The second concerns the religious significance of the tomb and its location in a mythical landscape which is shaped, in part, by poetry. The third investigates the literary graveyard as a place where poets’ bodies and poetic corpora are collected. Finally, the alleged ‘tomb of Virgil’ provides a specific site where the major claims made in this volume can be most easily be tested.


2011 ◽  
Vol 26 (4) ◽  
pp. 579-585 ◽  
Author(s):  
Charles R. Sampson ◽  
John Kaplan ◽  
John A. Knaff ◽  
Mark DeMaria ◽  
Chris A. Sisko

Abstract Rapid intensification (RI) is difficult to forecast, but some progress has been made in developing probabilistic guidance for predicting these events. One such method is the RI index. The RI index is a probabilistic text product available to National Hurricane Center (NHC) forecasters in real time. The RI index gives the probabilities of three intensification rates [25, 30, and 35 kt (24 h)−1; or 12.9, 15.4, and 18.0 m s−1 (24 h)−1] for the 24-h period commencing at the initial forecast time. In this study the authors attempt to develop a deterministic intensity forecast aid from the RI index and, then, implement it as part of a consensus intensity forecast (arithmetic mean of several deterministic intensity forecasts used in operations) that has been shown to generally have lower mean forecast errors than any of its members. The RI aid is constructed using the highest available RI index intensification rate available for probabilities at or above a given probability (i.e., a probability threshold). Results indicate that the higher the probability threshold is, the better the RI aid performs. The RI aid appears to outperform the consensus aids at about the 50% probability threshold. The RI aid also improves forecast errors of operational consensus aids starting with a probability threshold of 30% and reduces negative biases in the forecasts. The authors suggest a 40% threshold for producing the RI aid initially. The 40% threshold is available for approximately 8% of all verifying forecasts, produces approximately 4% reduction in mean forecast errors for the intensity consensus aids, and corrects the negative biases by approximately 15%–20%. In operations, the threshold could be moved up to maximize gains in skill (reducing availability) or moved down to maximize availability (reducing gains in skill).


Author(s):  
Temitope T. Abiola ◽  
Natércia d. N. Rodrigues ◽  
Casey Ho ◽  
Daniel J. L. Coxon ◽  
Michael D. Horbury ◽  
...  
Keyword(s):  

Author(s):  
Jahwan Koo ◽  
Nawab Muhammad Faseeh Qureshi ◽  
Isma Farah Siddiqui ◽  
Asad Abbas ◽  
Ali Kashif Bashir

Abstract Real-time data streaming fetches live sensory segments of the dataset in the heterogeneous distributed computing environment. This process assembles data chunks at a rapid encapsulation rate through a streaming technique that bundles sensor segments into multiple micro-batches and extracts into a repository, respectively. Recently, the acquisition process is enhanced with an additional feature of exchanging IoT devices’ dataset comprised of two components: (i) sensory data and (ii) metadata. The body of sensory data includes record information, and the metadata part consists of logs, heterogeneous events, and routing path tables to transmit micro-batch streams into the repository. Real-time acquisition procedure uses the Directed Acyclic Graph (DAG) to extract live query outcomes from in-place micro-batches through MapReduce stages and returns a result set. However, few bottlenecks affect the performance during the execution process, such as (i) homogeneous micro-batches formation only, (ii) complexity of dataset diversification, (iii) heterogeneous data tuples processing, and (iv) linear DAG workflow only. As a result, it produces huge processing latency and the additional cost of extracting event-enabled IoT datasets. Thus, the Spark cluster that processes Resilient Distributed Dataset (RDD) in a fast-pace using Random access memory (RAM) defies expected robustness in processing IoT streams in the distributed computing environment. This paper presents an IoT-enabled Directed Acyclic Graph (I-DAG) technique that labels micro-batches at the stage of building a stream event and arranges stream elements with event labels. In the next step, heterogeneous stream events are processed through the I-DAG workflow, which has non-linear DAG operation for extracting queries’ results in a Spark cluster. The performance evaluation shows that I-DAG resolves homogeneous IoT-enabled stream event issues and provides an effective stream event heterogeneous solution for IoT-enabled datasets in spark clusters.


2021 ◽  
Vol 11 (5) ◽  
pp. 2313
Author(s):  
Inho Lee ◽  
Nakkyun Park ◽  
Hanbee Lee ◽  
Chuljin Hwang ◽  
Joo Hee Kim ◽  
...  

The rapid advances in human-friendly and wearable photoplethysmography (PPG) sensors have facilitated the continuous and real-time monitoring of physiological conditions, enabling self-health care without being restricted by location. In this paper, we focus on state-of-the-art skin-compatible PPG sensors and strategies to obtain accurate and stable sensing of biological signals adhered to human skin along with light-absorbing semiconducting materials that are classified as silicone, inorganic, and organic absorbers. The challenges of skin-compatible PPG-based monitoring technologies and their further improvements are also discussed. We expect that such technological developments will accelerate accurate diagnostic evaluation with the aid of the biomedical electronic devices.


2021 ◽  
Vol 13 (5) ◽  
Author(s):  
Viktória Mozgai ◽  
Bernadett Bajnóczi ◽  
Zoltán May ◽  
Zsolt Mráv

AbstractThis study details the non-destructive chemical analysis of composite silver objects (ewers, situlas, amphora and casket) from one of the most significant late Roman finds, the Seuso Treasure. The Seuso Treasure consists of fourteen large silver vessels that were made in the fourth–early fifth centuries AD and used for dining during festive banquets and for washing and beautification. The measurements were systematically performed along a pre-designed grid at several points using handheld X-ray fluorescence analysis. The results demonstrate that all the objects were made from high-quality silver (above 90 wt% Ag), with the exception of the base of the Geometric Ewer B. Copper was added intentionally to improve the mechanical properties of soft silver. The gold and lead content of the objects shows constant values (less than 1 wt% Au and Pb). The chemical composition as well as the Bi/Pb ratio suggests that the parts of the composite objects were manufactured from different silver ingots. The ewers were constructed in two ways: (i) the base and the body were made separately, or (ii) the ewer was raised from a single silver sheet. The composite objects were assembled using three methods: (i) mechanical attachment; (ii) low-temperature, lead-tin soft solders; or (iii) high-temperature, copper-silver hard solders. Additionally, two types of gilding were revealed by the XRF analysis, one with remnants of mercury, i.e. fire-gilding, and another type without remnants of mercury, presumably diffusion bonding.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1431
Author(s):  
Ilkyu Kim ◽  
Sun-Gyu Lee ◽  
Yong-Hyun Nam ◽  
Jeong-Hae Lee

The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient’s vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2039 ◽  
Author(s):  
Adriano Panepinto ◽  
Rony Snyders

In this paper, we overview the recent progress we made in the magnetron sputtering-based developments of nano-sculpted thin films intended for energy-related applications such as energy conversion. This paper summarizes our recent experimental work often supported by simulation and theoretical results. Specifically, the development of a new generation of nano-sculpted photo-anodes based on TiO2 for application in dye-sensitized solar cells is discussed.


2017 ◽  
Vol 17 (19) ◽  
pp. 6167-6174
Author(s):  
Didem Tekgun ◽  
Wasi Uddin ◽  
Kye-Shin Lee ◽  
Yilmaz Sozer

1939 ◽  
Vol 17 (2) ◽  
pp. 69-82 ◽  
Author(s):  
D. W. Fenwick

Numerous attempts have been made in the past to induce the eggs of Ascaris suum to hatch outside the body of the host. Extra-corporeal hatching has been observed under a variety of conditions by different workers. Kondo (1920, 1922), Asada (1921) and others record hatching in water, charcoal and sand cultures. Wharton (1915) states that hatching will occur in alkaline digestive juices, while Martin (1913) records a similar phenomenon in pancreatic fluid. Many different explanations have been offered to explain this hatching. Wharton suggested that the interaction of algae and sand might have some effect. Ohba (1923), who found that hatching would occur in 0·2% hydrochloric acid and 0·2% sodium carbonate believed that extra-corporeal hatching was limited to very old cultures of eggs. Many workers are of the opinion that some stimulus normally present in the digestive tract is necessary for hatching.


Sign in / Sign up

Export Citation Format

Share Document