Effect of exogenous application of glycine betaine on tomato plants subjected to salt stress

2019 ◽  
pp. 41-48
Author(s):  
T.K. Sajyan ◽  
W. Allaw ◽  
N. Shaban ◽  
Y.N. Sassine
2021 ◽  
Vol 13 (15) ◽  
pp. 8369
Author(s):  
Chintan Kapadia ◽  
R. Z. Sayyed ◽  
Hesham Ali El Enshasy ◽  
Harihar Vaidya ◽  
Deepshika Sharma ◽  
...  

Salinity significantly impacts the growth, development, and reproductive biology of various crops such as vegetables. The cultivable area is reduced due to the accumulation of salts and chemicals currently in use and is not amenable to a large extent to avoid such abiotic stress factors. The addition of microbes enriches the soil without any adverse effects. The effects of microbial consortia comprising Bacillus sp., Delftia sp., Enterobacter sp., Achromobacter sp., was evaluated on the growth and mineral uptake in tomatoes (Solanum Lycopersicum L.) under salt stress and normal soil conditions. Salinity treatments comprising Ec 0, 2, 5, and 8 dS/m were established by mixing soil with seawater until the desired Ec was achieved. The seedlings were transplanted in the pots of the respective pH and were inoculated with microbial consortia. After sufficient growth, these seedlings were transplanted in soil seedling trays. The measurement of soil minerals such as Na, K, Ca, Mg, Cu, Mn, and pH and the Ec were evaluated and compared with the control 0 days, 15 days, and 35 days after inoculation. The results were found to be non-significant for the soil parameters. In the uninoculated seedlings’ (control) seedling trays, salt treatment significantly affected leaf, shoot, root dry weight, shoot height, number of secondary roots, chlorophyll, and mineral contents. While bacterized seedlings sown under saline soil significantly increased leaf (105.17%), shoot (105.62%), root (109.06%) dry weight, leaf number (75.68%), shoot length (92.95%), root length (146.14%), secondary roots (91.23%), and chlorophyll content (−61.49%) as compared to the control (without consortia). The Na and K intake were higher even in the presence of the microbes, but the beneficial effect of the microbe helps plants sustain in the saline environment. The inoculation of microbial consortia produced more secondary roots, which accumulate more minerals and transport substances to the different parts of the plant; thus, it produced higher biomass and growth. Results of the present study revealed that the treatment with microbial consortia could alleviate the deleterious effects of salinity stress and improve the growth of tomato plants under salinity stress. Microbial consortia appear to be the best alternative and cost-effective and sustainable approach for managing soil salinity and improving plant growth under salt stress conditions.


2019 ◽  
Vol 157 ◽  
pp. 161-170 ◽  
Author(s):  
David Jiménez-Arias ◽  
Francisco J. García-Machado ◽  
Sarai Morales-Sierra ◽  
Emma Suárez ◽  
José A. Pérez ◽  
...  

2018 ◽  
Vol 71 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Mouhamad Alhoshan ◽  
Morteza Zahedi ◽  
Ali Akbar Ramin ◽  
Mohammad R. Sabzalian

2021 ◽  
Author(s):  
Tong Pei ◽  
Yufang Bao ◽  
Tairu Wu ◽  
Ziyu Wang ◽  
Yue Wang ◽  
...  

Abstract The SlZF-31 gene is a member of the tomato C2H2 transcription factor family. Previous studies have shown that SlZF-31 gene expression is upregulated under drought stress and salt stress, but the specific function of this gene in tomato plants in response to these two kinds of stress is still unclear. To further explore the function of the SlZF-31 gene in tomato under drought stress and salt stress, we employed the virus-induced gene silencing (VIGS) method to reduce the expression of the SlZF-31 gene in tomato. The results showed that TRV2-SlZF-31 plants had higher levels of wilt and stem bending than CK and CK-TRV2 plants under drought and salt stress. The ABA content of TRV2-SlZF-31 plants were lower than those of CK and CK-TRV2 plants. The analysis of physiological indexes showed that the SOD and POD activity and the PRO content of TRV2-SlZF-31 plants were lower than those of CK and CK-TRV2 plants, while the MDA content of TRV2-SLlZF-31 plants was higher than those of CK and CK-TRV2 plants. The accumulation of H2O2 and O2- in TRV2-SlZF-31 plants was greater than those in CK and CK-TRV2 plants. The values of the chlorophyll fluorescence parameters (ΦII and qL) of TRV2-SlZF-31 plants were significantly lower than those of CK and CK-TRV2 plants. These results showed that the silencing of the SlZF-31 gene reduces the drought resistance and salt tolerance of tomato.


2015 ◽  
Vol 26 (2) ◽  
pp. 21-25 ◽  
Author(s):  
Marcelina Krupa-Małkiewicz ◽  
Beata Smolik ◽  
Dominik Ostojski ◽  
Maja Sędzik ◽  
Justyna Pelc

AbstractThe aim of this study is to determine the effect of both NaCl and KCl alone and in comparison to AsA on the morphological and some biochemical parameters of Oxheart and Vilma cultivars of tomato under laboratory and field conditions. A combination of salt applied in the laboratory experiment caused a significant effect on seed germination and root and shoot length and a significant reduction of Chl a, Chl b and Car contents in 14-day-old tomato seedlings. However, seedlings of cultivar Vilma were characterised by higher tolerance to applied salt stress.NaCl caused a significant decrease in Chl a, Chl b and Car, and an increase in Pro and MDA content in the leaves of Vilma cultivar under field conditions. Besides, tomato plants cv. Vilma treated with NaCl alone or NaCl with ascorbic acid developed longer roots, from 48 to 73%, compared to the control.


Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 175 ◽  
Author(s):  
Hipólito Hernández-Hernández ◽  
Antonio Juárez-Maldonado ◽  
Adalberto Benavides-Mendoza ◽  
Hortensia Ortega-Ortiz ◽  
Gregorio Cadenas-Pliego ◽  
...  

Saline stress severely affects the growth and productivity of plants. The activation of hormonal signaling cascades and reactive oxygen species (ROS) in response to salt stress are important for cellular detoxification. Jasmonic acid (JA) and the enzyme SOD (superoxide dismutase), are well recognized markers of salt stress in plants. In this study, the application of chitosan-polyvinyl alcohol hydrogels (Cs-PVA) and copper nanoparticles (Cu NPs) on the growth and expression of defense genes in tomato plants under salt stress was evaluated. Our results demonstrate that Cs-PVA and Cs-PVA + Cu NPs enhance plant growth and also promote the expression of JA and SOD genes in tomato (Solanum lycopersicum L.), under salt stress. We propose that Cs-PVA and Cs-PVA + Cu NPs mitigate saline stress through the regulation of oxidative and ionic stress.


Sign in / Sign up

Export Citation Format

Share Document