scholarly journals Mix Proportion of Lightweight Straw Ceramsite Concrete

CONVERTER ◽  
2021 ◽  
pp. 110-117
Author(s):  
Yanxia Huang

To reduce air pollution of straw burning, and also to improve the ratio of straw comprehensive utilization, this paper presents a lightweight concrete with straw based on the mix proportion research. Firstly, the mix proportion of lightweight ceramsite concrete was designed by a volumetric method. Then, a series of lightweight ceramsite concrete mix proportion experiments were conducted to verify the validity of the design and to evaluate the effect of the admixtures on the performance of the concrete. Finally, the lightweight straw ceramsite concrete mix proportion experiments were conducted by adding straw to lightweight ceramsite concrete for studying the impact of the straw amount on the concrete strength and density. The experimental results show that the compressive strength of lightweight straw ceramsite concrete can reach the requirement of engineering application. The concrete strength and density were descended obviously with the increasing of straw amount. It was suggested that the straw amount should be limited in 20% of the concrete volume.

2012 ◽  
Vol 174-177 ◽  
pp. 1067-1071 ◽  
Author(s):  
Jon Bi ◽  
Binsar Hariandja ◽  
Iswandi Imran ◽  
Ivindra Pane

Keywords: High Performance Concrete, mix proportions, compressive strength , and durability Abstract. The use of concrete materials to date, remain a key ingredient in such construction work on the construction of building, bridges and infrastructure. One indicator is the increased production of readymix concrete which is nearly 16 billion tons in 2010. But the increased used of concrete, apparently bring the impact of environmental damage. This is due to the fact that production of raw materials contributes greatly to CO2 in the air. One effort to reduce such impact is to use of high performance concretes. Mix proportion of High Performance Concrete are strongly determined by the quality and availablity of local materials. The implications of research result from other countries can‘t be directly used. Therefore is need to the research on development of High Performance Concrete mix using locally available materials. In this research the mix proportions for f’c : 60 and 80 MPa are developed using local materials that are commonly used by readymix producers. The high Performance Concrete is developed based on compressive strength and durability. The result is expected to be applied to readymix industry particularly for construction use in Indonesia.


2013 ◽  
Vol 438-439 ◽  
pp. 690-695
Author(s):  
Xiao Yu ◽  
Na Wu ◽  
Zhao Yang ◽  
Kai Xu

t is focused on a super high-rise building structure, of which the concrete compressive strength is reduced in joint core. The whole structure is calculated with program SATWE. Based on this calculation, integral stress analysis by MIDAS when concrete strength is reduced in joint core area and nonlinear finite element analysis by ANSYS on the joints of the worst cross-sections in the whole structure are developed. Thus the adverse effect of reduced concrete strength in joint core area on super high-rise structures is found out.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Teewara Suwan ◽  
Pitiwat Wattanachai

Global warming is a vital issue addressed to every sector worldwide, including the construction industry. To achieve the concept of green technology, many attempts have been carried out to develop low-carbon footprint products. In the construction sector, Autoclaved Aerated Concrete (AAC) has become more popular and been manufactured to meet the construction demand. However, errors from manufacturing process accounted for approximately 3 to 5% of the AAC production. The development of AAC waste as lightweight aggregate in concrete is one of the potential approaches which was extendedly studied in this paper. The results showed that the compressive strength of AAC-LWA concrete was decreased with an increase in volume and coarse size. The optimum mix proportion was the AAC aggregate size of 1/2′′ to 3/8′′ with 20 to 40% replacement to normal weight aggregate. Internal curing by AAC-LWA was also observed and found to provide sufficient water inside the specimens, leading to an achievement in higher compressive strength. The main goal of this study is not only utilising unwanted wastes from industry (recycling of waste materials) but also building up a new knowledge of using AAC-LWA as an internal curing agent as well as the production of value-added lightweight concrete products.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 720
Author(s):  
Gunasekaran Murali ◽  
Sallal R. Abid ◽  
Mugahed Amran ◽  
Roman Fediuk ◽  
Nikolai Vatin ◽  
...  

The use of expanded clay aggregate (ECA) for developing lightweight concrete results in strength-reduction properties. However, the ECA-based concrete strength properties can be improved by adding steel fibre (SF), glass fibre mesh (GFM) and multi-walled nano-carbon tubes (MWCNT). The combined effect of MWCNT, GFM, SF and ECA-based concrete and its strength properties is still unexplored. It is worth drawing a logical conclusion concerning the impact on the strength of concrete by incorporating the materials mentioned above. Two-stage expanded clay aggregate fibrous concrete (TECAFC) is a new concrete type and an emerging research area in material engineering. The casting method of TECAFC includes the two essential phases as follows. First, ECA and fibres are filled into the empty cylindrical mould to develop a natural skeleton. Second, the grout comprising cement, sand and MWCNT, are injected into the developed skeleton to fill voids. In this research, eight mixtures were prepared with 0.1 and 0.2% of MWCNT, 2.5% dosage of SF and three different layers of GFM inserted between the two layers of concrete. These eight mixtures were divided into two series of three mixtures each, in addition to two reference mixtures that include no SF or GFM. The first series of mixtures was comprised of 0.1% of MWCNT and 2.5% of SF and one, two and three layers of GFM insertion. The second series was the same as the first series and the dosage of MWCNT was taken as 0.2%. All cylindrical specimens were tested under drop mass impact as per the suggestions made by the ACI Committee 544. The test results showed that incorporating steel fibres and GFM improved the cracking and failure impact resistance by more than 270 and 1100%, respectively, and increased the impact ductility index by more than 220%, significantly contributing to steel fibres.


Lightweight concrete is to be treated as structural concrete (using LECA as CA), it must satisfy the density in range of 1120-1920 kg/m3 and strength not less than 20 N/mm². In order to accomplish required strength, LECA with metakaolin was used at different concentrations of (20% to 26%) by weight of cement at equal increments of 2%. Test results clearly indicates that, using LECA and metakaolin as selective substitution increases the compressive strength and durable properties. The prerequisite of using additional cementious material as metakaolin was to enhance the compressive strength, durability of LWC. Metakaolin content seems to lead high early age strength with relative increase in strength of 28 days. The effective content of metakaolin was 24% along with 60% LECA as partial substitution gave very much appreciable results. The percentage reduction in density recorded was 33%. The durable aspects such as resistance offered to acidic environment was also affirming when as compared to conventional concrete.


Author(s):  
N. Sharma ◽  
M. Singh Thakur ◽  
P.L. Goel ◽  
P. Sihag

Purpose: Over the years, various experiments have been performed to investigate the impact of marble powder within the concrete mixture. In the present study, a review has been done to check the persistence of marble dirt as the substitute for concrete constituents. Design/methodology/approach: Furthermore, the impact of marble powder as a replacement of cement and aggregates were reviewed. By reviewing previous studies, the result indicates that the use of waste marble powder in cement and aggregate was adequate to a certain range. Findings: By replacing cement with marble powder in a range between 5% to 10% by weight, it increases the compressive strength of concrete mix by 11.30% to 24.56%, compared to the nominal mix. According to the study, any further increase in the amount of marble powder in place of cement i.e, 12.5% to 20% replacement by weight, results in the reduction of compressive strength of concrete mix by 7.5% to 26.01%. Replacement of aggregates from 5% to 75% with marble powder increases the compressive strength of about 3.22% to 23.91% as compared to the nominal mix. Research limitations/implications: It was also concluded from the current study that, to obtain higher compressive strength, it is advantageous to replace fine aggregates with marble powder than the replacement of cement with the marble powder.


2017 ◽  
Vol 865 ◽  
pp. 289-294
Author(s):  
Xi Ri Kang ◽  
Guang Xiu Fang

This test uses polycarboxylate superplasticizer by adding 15% quantitative fly ash, 10%, 15%, 20% of slag, and 5%,7.5%, 10% of silica fume of the total amount of the cementitious material to be an equivalent replacement for cement. Ordinary materials were used to make the C70 high strength self-compacting concrete. The concrete slump, expansion degree, and the axial compressive strength of concrete were studied. Through testing, the mix proportion of each group of concrete slump was determined to be above 250mm. And the expansion degree to be above 550mm. The axial compressive strength satisfied the design strength value. At the same time, the optimal mix ratio was proposed. And the economic performance of each group was analyzed. There are references for a similar experimental design and engineering application.


2014 ◽  
Vol 931-932 ◽  
pp. 431-435 ◽  
Author(s):  
Nattakan Dulsang ◽  
Prinya Chindaprasirt ◽  
Patcharapol Posi ◽  
Salim Hiziroglu ◽  
Pattraporn Sutaphakdee ◽  
...  

In this study, mix proportion parameters of lightweight concrete (LWC) containing ethyl vinyl acetate (EVA) plastic waste from footwear manufacture were investigated by employing Taguchis method and ANOVA statistics. The mixtures were designed in a L9 orthogonal array with four factors viz., water/cement, water content, EVA content and sand/cement. The results showed that EVA content and water/cement ratio had the significant effect on density and compressive strength of LWC. The density and compressive strength of the LWC containing EVA waste ranged from 1172 to 1441 kg/m3 and from 3.5 to 10.8 MPa, respectively. It can be concluded that the obtained LWC can be classified as masonry concrete. The best possible levels for mix proportions were determined to optimize density and compressive strength of the samples.


2014 ◽  
Vol 2 (1) ◽  
pp. 83-88
Author(s):  
ELIVS M. MBADIKE ◽  
EZEOKPUBE G.C.

In this research work, the effect of plastic synthetic aggregate in the production of lightweight concrete was studied. The plastic synthetic aggregate was used to replace 0-40% of coarse aggregates. A mix proportion of 1:1.8:3.7 with water cement ratio of 0.47 were used. Concrete cubes of 150mmx150mmx150mm of coarse aggregate/plastic synthetic aggregate were cast and cured at 3,7,28,60 and 90 days respectively. At the end of each hydration period, the three concrete cubes for each hydration period were crushed and their average compressive strength recorded. A total of ninety (90) concrete cubes were cast. The result of the compressive strength tests for 5-40% replacement of coarse aggregates with plastic synthetic aggregate ranges from 8.07-36.71N/mm2 as against 24.58-41.21N/mm2 for the control test. The workability for 5-40% replacement of coarse aggregates with plastic synthetic aggregate ranges from 12-61mm as against 8mm for the control test (0% replacement).


2021 ◽  
Vol 933 (1) ◽  
pp. 012005
Author(s):  
S Winarno

Abstract Raw rice husk is an abundantly available waste material in Indonesia as one of rice producing countries. Due to rice husk is light in weight and convex in shape, this paper presents a preliminary application of raw rice husk as natural aggregate in order to make lightweight concrete blocks. Concrete specimens contained Portland Cement, filler, and raw rice husk, in which the mix proportion was in volumetric ratio, i.e 1.25 cement and 2.75 filler constantly, whereas dosage of rice husk varied from 8.5 to 10. The production of the concrete block was by mixing the ingredients together and then the mixture was casted and compacted on moulds by hand manually. Series laboratory experiments were accomplished to analyse the compressive strength and density. For this, four groups of mixes were prepared. The results have shown that the higher proportion of rice husk is the lower its compressive strength and the lighter its density. At proportion of 1,25 cement: 2,75 fillers: 8,5 raw rice husks, the compressive strength is 26.64 kg/cm2 and this satisfies the minimum standard (25 kg/cm2). Unfortunately, the density is 1,536.73 kg/m3 and it is higher than the maximum standard of 1,400 kg/m3. Thus, it is important to research further by making and testing some improved specimens with more cement, more rice husk, and less filler to fulfil strength and density.


Sign in / Sign up

Export Citation Format

Share Document