scholarly journals IoT BASED SMART AND EFFICIENT WIND TURBINE MONITORING SYSTEM

2021 ◽  
Vol 9 (1) ◽  
pp. 1205-1212
Author(s):  
S. KALAIVANI, C. THARINI, A.M. AZARUDEEN, R. KARTHIKEYAN

Wind Turbine industry has the improved latest generation of Wind turbines with bigger flexible blades, high tower, Good efficiency & low cost repairing in all platforms of wind turbines from Small wind mills to Ocean wind turbines. The Control centre is responsible for Monitoring and Controlling wind turbines in wind power farms. Various parameters like Oil level, Gas leakage, air pressure, vibrations & linear velocity, environmental condition like rain & humidity are to be monitored and controlled for proper working of the wind turbines. In the proposed work, smart and efficient turbine network architecture is designed to automate this process. The aim of the proposed work is to monitor the different parameters of the turbine using respective sensors. The acquired sensor data are uploaded to the cloud via WiFi module for online monitoring and further data analysis. IFTTT Server of Adafruit io cloud is used to send the warning notification of the critical sensor value to the concerned person. Also the sensor node life time is taken care by implementing a proposed compression algorithm in each node that reduces the amount of data transmitted and thereby the energy consumed during transmission.

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1671 ◽  
Author(s):  
Chia-Hung Yeh ◽  
Min-Hui Lin ◽  
Chien-Hung Lin ◽  
Cheng-En Yu ◽  
Mei-Juan Chen

Within Internet of Things (IoT) sensors, the challenge is how to dig out the potentially valuable information from the collected data to support decision making. This paper proposes a method based on machine learning to predict long cycle maintenance time of wind turbines for efficient management in the power company. Long cycle maintenance time prediction makes the power company operate wind turbines as cost-effectively as possible to maximize the profit. Sensor data including operation data, maintenance time data, and event codes are collected from 31 wind turbines in two wind farms. Data aggregation is performed to filter out some errors and get significant information from the data. Then, the hybrid network is built to train the predictive model based on the convolutional neural network (CNN) and support vector machine (SVM). The experimental results show that the prediction of the proposed method reaches high accuracy, which helps drive up the efficiency of wind turbine maintenance.


Author(s):  
Sayem Zafar ◽  
Mohamed Gadalla

A small horizontal axis wind turbine rotor was designed and tested with aerodynamically efficient, economical and easy to manufacture blades. Basic blade aerodynamic analysis was conducted using commercially available software. The blade span was constrained such that the complete wind turbine can be rooftop mountable with the envisioned wind turbine height of around 8 m. The blade was designed without any taper or twist to comply with the low cost and ease of manufacturing requirements. The aerodynamic analysis suggested laminar flow airfoils to be the most efficient airfoils for such use. Using NACA 63-418 airfoil, a rectangular blade geometry was selected with chord length of 0.27[m] and span of 1.52[m]. Glass reinforced plastic was used as the blade material for low cost and favorable strength to weight ratio with a skin thickness of 1[mm]. Because of the resultant velocity changes with respect to the blade span, while the blade is rotating, an optimal installed angle of attack was to be determined. The installed angle of attack was required to produce the highest possible rotation under usual wind speeds while start at relatively low speed. Tests were conducted at multiple wind speeds with blades mounted on free rotating shaft. The turbine was tested for three different installed angles and rotational speeds were recorded. The result showed increase in rotational speed with the increase in blade angle away from the free-stream velocity direction while the start-up speeds were found to be within close range of each other. At the optimal angle was found to be 22° from the plane of rotation. The results seem very promising for a low cost small wind turbine with no twist and taper in the blade. The tests established that non-twisted wind turbine blades, when used for rooftop small wind turbines, can generate useable electrical power for domestic consumption. It also established that, for small wind turbines, non-twisted, non-tapered blades provide an economical yet productive alternative to the existing complex wind turbine blades.


Author(s):  
David MacPhee ◽  
Asfaw Beyene

Blade pitch control has been extremely important for the development of Horizontal-Axis Wind Turbines (HAWTs), allowing for greater efficiency over a wider range of operational regimes when compared to rigid-bladed designs. For Vertical-Axis Wind Turbines (VAWTs), blade pitching is inherently more difficult due to a dependence of attack angle on turbine armature location, shaft speed, and wind speed. As a result, there have been very few practical pitch control schemes put forward for VAWTs, which may be a major reason why this wind turbine type enjoys a much lower market share as compared to HAWTs. To alleviate this issue, the flexible, straight-bladed vertical-axis turbine is presented, which can passively adapt its geometry to local aerodynamic loadings and serves as a low-cost blade pitch control strategy increasing efficiency and startup capabilities. Using two-dimensional fluid-structure action simulations, this novel concept is compared to an identical rigid one and is proven to be superior in terms of power coefficient due to decreased torque minima. Moreover, due to the flexible nature of the blades, the morphing turbine achieves less severe oscillatory loadings. As a result, the morphing blade design is expected to not only increase efficiency but also system longevity without additional system costs usually associated with active pitch control schemes.


Author(s):  
Mst Sunzida Ferdoues ◽  
Sasan Ebrahimi ◽  
Krishna Vijayaraghavan

A new class of wind turbine termed the external axis wind turbine (EAWT) has been recently developed. The EAWT is a new class of wind turbines that combines the low cost of vertical axis wind turbines with the high power of horizontal axis wind-turbine. This paper is a first step study that assumes a constant wind speed and a simple on-off controller. The paper optimizes the number of blades in the EAWT and the time at which the controller must be turned on to simultaneously maximize the power while minimizing the time required to reach optimal operation. The multi-objective optimization on the EAWT is performed on a response surface that is generated using Computational Fluid Dynamics (CFD) simulations. The turbulence model and mesh-sizing for the CFD simulations are validated against previously published experimental results on a buff body. To the best of authors’ knowledge, this paper is the first study to investigate changing blade count, and determining optimal operation speed to simultaneously maximize power, while minimizing the time needed to reach peak operational point in wind-turbines.


Author(s):  
Abhisek Banerjee ◽  
Sukanta Roy ◽  
Prasenjit Mukherjee ◽  
Ujjwal K. Saha

Although considerable progress has already been achieved in the design of wind turbines, the available technical designs are not yet adequate to develop a reliable wind energy converter especially meant for small-scale applications. The Savonius-style wind turbine appears to be particularly promising for the small-scale applications because of its design simplicity, good starting ability, insensitivity to wind directions, relatively low operating speed, low cost and easy installation. However, its efficiency is reported to be inferior as compared to other wind turbines. Aiming for that, a number of investigations have been carried out to increase the performance of this turbine with various blade shapes. In the recent past, investigations with different blade geometries show that an elliptic-bladed turbine has the potential to harness wind energy more efficiently. In view of this, the present study attempts to assess the performance of an elliptic-bladed Savonius-style wind turbine using 2D unsteady simulations. The SST k-ω turbulence model is used to simulate the airflow over the turbine blades. The power and torque coefficients are calculated at rotating conditions, and the results obtained are validated with the wind tunnel experimental data. Both the computational and experimental studies indicate a better performance with the elliptical blades. Further, the present analysis also demonstrates improved flow characteristics of the elliptic-bladed turbine over the conventional semi-circular design.


2021 ◽  
Vol 19 ◽  
pp. 195-198
Author(s):  
J. Vilà ◽  
◽  
N. Luo ◽  
L. Pacheco ◽  
T. Pujol ◽  
...  

The installed power capacity from small wind turbines would rise in case of having higher efficiency values. The performance of these devices is very sensitive to wind conditions, especially to wind gusts and turbulence. Performance extracted from small-scale wind turbine datasheets show large variations of power output between turbulent and non-turbulent sites and often the installation in intermittent wind sites is discouraged. The use of blades with fixed positions is a clear drawback of small wind turbines. Here, we propose a design of a smart active pitch control to increase the energy generation of micro-wind turbines (< 5 kWp). The design consists of a simple mechanism that allows the rotation of the blades controlled by a low cost peripheral interface controller. The possibility to orientate the blades so as to maximise the power output at all wind conditions will increase the performance of this small wind turbines. The design is robust and economical, which will increase its potential adoptability rate by the end-user.


2021 ◽  
pp. 0309524X2110605
Author(s):  
Andreas W Momber ◽  
Torben Möller ◽  
Daniel Langenkämper ◽  
Tim W Nattkemper ◽  
Daniel Brün

The application of protective coating systems is the major measure against the corrosion of steel for tower sections of wind turbines. The inspection, condition monitoring and maintenance of protective coating system is a demanding and time-consuming procedure and requires high human effort. The paper introduces for the first time a Digital Twin concept for the condition monitoring and prescriptive maintenance planning for surface protection systems on wind turbine towers. The initial point of the concept is an in-situ Virtual Twin for the generation of reference areas for condition monitoring. The paper describes the integration of an online image annotation and processing tool, a maintenance model, corrosive resistance parameters, structural load parameters, and sensor data into the Digital Twin concept. The prospects of the concept and its practical relevance are shown for tower structures of large onshore wind turbines.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5207 ◽  
Author(s):  
Fahed Martini ◽  
Leidy Tatiana Contreras Montoya ◽  
Adrian Ilinca

When operating in cold climates, wind turbines are vulnerable to ice accretion. The main impact of icing on wind turbines is the power losses due to geometric deformation of the iced airfoils of the blades. Significant energy losses during the wind farm lifetime must be estimated and mitigated. Finding solutions for icing calls on several areas of knowledge. Modelling and simulation as an alternative to experimental tests are primary techniques used to account for ice accretion because of their low cost and effectiveness. Several studies have been conducted to replicate ice growth on wind turbine blades using Computational Fluid Dynamics (CFD) during the last decade. While inflight icing research is well developed and well documented, wind turbine icing is still in development and has its peculiarities. This paper surveys and discusses the models, approaches and methods used in ice accretion modelling in view of their application in wind energy while summarizing the recent research findings in Surface Roughness modelling and Droplets Trajectory modelling. An An additional section discusses research on the modelling of electro-thermal icing protection systems. This paper aims to guide researchers in wind engineering to the appropriate approaches, references and tools needed to conduct reliable icing modelling for wind turbines.


2018 ◽  
Vol 42 (4) ◽  
pp. 286-303 ◽  
Author(s):  
Muhammad Farhan ◽  
Mohammad Reza Shah Mohammadi ◽  
José António Correia ◽  
Carlos Rebelo

Steel tubular structures are somewhat entrenched for the wind turbine towers. Recently, steel hybrid lattice/tubular towers are being investigated as a conceivable answer for taller onshore wind turbines for which convectional steel tubular towers are less competitive. Hybrid lattice/tubular towers require a transition piece which serves as a connection between lattice and tubular part. As the transition piece is supposed to transfer all the dynamic and self-weight loads to the lattice and foundation, these structural elements present unique features and are critical components to design and ought to resist strong cyclic bending moments, shear forces, and axial loads. Well-designed transition pieces with optimized ultimate state and fatigue capacities for manufacturing contribute to the structural soundness, reliability, and practicability of new onshore wind turbines hybrid towers. This research focuses on the investigation of the transition piece for an onshore wind turbine hybrid tower. The 5-MW reference wind turbine and a hybrid lattice/tubular tower were simulated in the servo-hydro aero-elastic analysis tool (by ASHES software) from which the loads and dynamic response of the supporting structure were obtained. Cross-sectional forces at the transition piece elevation were calculated and the connection with the lattice structure is designed. The transition piece was designed by finite element model considering ultimate limit load and fatigue load, using nonlinear analysis and multiaxial fatigue for life-time prediction, respectively. Multiaxial fatigue life was calculated based on Brown–Miller and Smith–Watson–Topper methods. In comparison, Smith–Watson–Topper method comes out to be more conservative. Potential of using high-strength steel S690 was investigated.


2021 ◽  
Author(s):  
Gretchell M. Hiraldo-Martínez ◽  
Alex D. Santiago-Vargas ◽  
Diego A. Aponte-Roa ◽  
Miguel A. Goenaga-Jiménez

Abstract The inclusion of renewable energy as wind turbines on microgrids has been increasing in popularity. However, commercial micro wind turbines lack advance electronic control systems to monitor the turbine and automatically brake for safety purposes. This paper presents the design of a modular electronic braking and monitoring system architecture with off-the-shelf electronic components and open-source software. The proposed system records the turbine operational parameters and triggers a braking system when an emergency stop button is closed or when a desired electrical parameter exceeds an established threshold. Electronic braking is a low-cost alternative that needs less maintenance, space, and mechanical complexity. We used a 400W micro wind turbine located at 17 feet high to test the proposed system architecture. Results demonstrate that this system architecture could be implemented for wind turbines in any existing polygeneration microgrid as an add-on.


Sign in / Sign up

Export Citation Format

Share Document