scholarly journals EFFECT OF CARBON NANOTUBES ON THE ELECTRICAL PROPERTIES OF THE POLYMERIC COMPOSITES

Author(s):  
Sergey Gango ◽  
Konstantin Gusev ◽  
Evgeniy Ilin ◽  
Mikhail Predtechensky ◽  
Vladimir Solovyev ◽  
...  

Experimental study of single-wall carbon nabotubes (CNT) effect on the electrical properties of polymeric composite materials based on epoxy matrix has been carried out. Direct-current (DC) as well as alternating-current (AC) electrical conductivity of nanocomposites with different CNT concentrations have been investigated in the temperature interval from 293 K to 373 K. Measurements of Seebeck coefficient confirm n-type conductivity of composite with CNTs. Percolation threshold of the composite material under study has been estimated. It has been found that addition of single-wall CNT at low concentration causes hysteresis of current-voltage characteristics and the temperature dependences of electrical conductivity as well as its anisotropy in the samples under study. No noticeable frequency dependence of the AC electrical conductivity has been found in the frequency range from 100 Hz to 300 kHz.

2016 ◽  
Vol 674 ◽  
pp. 109-114 ◽  
Author(s):  
Jan Pospisil ◽  
Veronika Schmiedova ◽  
Oldrich Zmeskal ◽  
Viliam Vretenar ◽  
Peter Kotrusz

The paper deals with the study of optical and electrical properties of inkjet-printed graphene oxide (GO) layers, which can be used e.g. for the preparation of various types of electronic devices. To ensure stable inkjet printing conditions of GO solution, mixture was thoroughly stirred for 1 h at room temperature or sonicated in the bath for 30 min. The thicknesses of prepared layers were determined by spectroscopic ellipsometry and profilometry. An electrical conductivity of GO was increased by the multistep reduction (due to annealing) – the conductivity was changed by these processes about seven orders of magnitude (GO is an isolator and reduced GO is a conductor). For electrical and dielectric measurements, samples with GO and mixture of GO with PEDOT were prepared. All current-voltage characteristics have a diode character. From AC measurements the bulk electrical conductivity and geometric capacity of prepared layers were determined.


2020 ◽  
Vol 1 (1) ◽  
pp. 13-25
Author(s):  
Salama A. H.

Electrical properties of some new cyclopentenone derivatives have been studied. The structures of prepared samples were characterized by (UV), (XRD) and (SEM). The dependence of electrical properties such as σdc , σac , ɛ' and ɛ'' on frequency and temperature were studied at frequency range from 50 Hz to 5 MHz and the temperature range from 25oC to 140oC. It was found that, ɛ' decreased with increasing frequency while it increases with increasing temperatures within the used ranges. Moreover, dielectric constant is structural dependent which is obvious from the variation of dielectric constant for each sample. Ac-electrical conductivity increased with increasing frequency which was attributed to the polarization of the charge carriers. The temperature dependence of dc-electrical conductivity show typical Arrhenius relation for the three prepared samples. The activation energy calculated from Arrhenius equation and the results are discussed in detailed.


2010 ◽  
Vol 03 (04) ◽  
pp. 263-267 ◽  
Author(s):  
HUI BI ◽  
KAICHANG KOU ◽  
YONGBAI YIN ◽  
KOSTYA (KEN) OSTRIKOV ◽  
ZONGWEN LIU

The results on the synthesis, mechanical and electrical properties of carbon microcoils and nanocoils (CMCs, CNCs) synthesized using catalytic CVD and Ni–P and Co–P catalyst alloys, respectively, are reported. SEM analysis reveals that the CMCs and CNCs have unique helical morphologies, and diameters of 5.0–9.0 μm and 450–550 nm, respectively. Moreover, CMCs with flat cross-section can be stretched to 3 times their original coil lengths. Current–voltage characteristics of a single microcoil have also been obtained. It is found that the CMCs have the electrical conductivity between 100 and 160 S/cm, whereas the electrical resistance increases by about 20% during the coil extension. Besides, the microcoils can produce light in vacuum when the test voltage reaches 10 V. The emission intensity increases as the voltage increases. The mechanical and electrical properties of CMCs and CNC make them potentially useful in many applications in micromagnetic sensors, mechanical microsprings and optoelectronics.


2019 ◽  
Vol 61 (2) ◽  
pp. 243
Author(s):  
А.М. Ершова ◽  
М.К. Овезов ◽  
И.П. Щербаков ◽  
А.Н. Алешин

AbstractThe electrical properties of the films of organometallic perovskites CH_3NH_3PbBr_3 and CH_3NH_3PbI_3 were studied. Current–voltage characteristics for the CH_3NH_3PbBr_3 and CH_3NH_3PbI_3 samples were measured in a temperature range of 300–80 K, from which the temperature dependences of resistivity ρ( T ) having characteristic points of inflection in a range of 160–240 K were determined. The activation energies of charge carriers prior to and after points of inflection were determined. It is assumed that the observed features in the temperature dependences of resistivity (temperature at the points of inflection) correlate with the temperatures of tetragonal-to-orthorhombic phase transitions for two studied organometallic perovskites (CH_3NH_3PbBr_3 and CH_3NH_3PbI_3).


2019 ◽  
Vol 64 (2) ◽  
pp. 164 ◽  
Author(s):  
I. G. Orletskyi ◽  
M. I. Ilashchuk ◽  
E. V. Maistruk ◽  
M. M. Solovan ◽  
P. D. Maryanchuk ◽  
...  

Conditions for the production of rectifying semiconductor-insulator-semiconductor (SIS) heterostructures n-SnS2/CdTeO3/p-Cd1−xZnxTe with the use of the spray-pyrolysis of SnS2 thin films on p-Cd1−xZnxTe crystalline substrates with the formation of an intermediate tunnel-thin CdTeO3 oxide layer have been studied. By analyzing the temperature dependences of the current-voltage characteristics, the dynamics of the heterostructure energy parameters is determined, and the role of energy states at the CdTeO3/p-Cd1−xZnxTe interface in the formation of forward and reverse currents is elucidated. By analyzing the capacity-voltage characteristics, the processes of charge accumulation and inversion in SIS structures is considered. An energy diagram of the examined heterostructure, which well describes experimental electro-physical phenomena, is proposed.


1998 ◽  
Vol 258-263 ◽  
pp. 1848-1855 ◽  
Author(s):  
K Shiiyama ◽  
M.M.R Howlader ◽  
S.J Zinkle ◽  
T Shikama ◽  
M Kutsuwada ◽  
...  

2019 ◽  
Vol 43 (41) ◽  
pp. 16255-16263
Author(s):  
Mrinmoy Ghosh ◽  
Sandip Saha ◽  
Abhijit Banerjee ◽  
Dieter Schollmeyer ◽  
Ananda Sarkar ◽  
...  

The structure, FESEM, Al/complex/ITO microstructure and the current–voltage characteristics of the copper(ii) azido bridged dimer.


2013 ◽  
Vol 591 ◽  
pp. 54-60
Author(s):  
Xiu Li Fu ◽  
Yan Xu Zang ◽  
Zhi Jian Peng

The effect of WO3doping on microstructural and electrical properties of ZnO-Pr6O11based varistor materials was investigated. The doped WO3plays a role of inhibitor in ZnO grain growth, resulting in decreased average grain size from 2.68 to 1.68 μm with increasing doping level of WO3from 0 to 0.5 mol%. When the doping level of WO3was lower than 0.05 mol%, the nonlinear current-voltage characteristics of the obtained varistors could be improved significantly with increasing amount of WO3doped. But when the doping level of WO3became higher, their nonlinear current-voltage performance would be dramatically deteriorated when more WO3was doped. The optimum nonlinear coefficient, varistor voltage, and leakage current of the samples were about 13.71, 710 V/mm and 13 μA/cm2, respectively, when the doping level of WO3was in the range from 0.03 to 0.05 mol%.


Sign in / Sign up

Export Citation Format

Share Document