scholarly journals PRIMARY ASSESSMENT OF THE DEGREE OF TORREFACTION OF BIOMASS AGRICULTURAL CROPS

Author(s):  
Serhii Yermakov ◽  
Taras Hutsol ◽  
Szymon Glowacki ◽  
Vadym Hulevskyi ◽  
Viktoriia Pylypenko

Biomass energy is an important component in the overall structure of renewable energy and has the greatest potential for increasing volumes.  However, the peculiarities of the properties of agro-industrial residues are a significant disadvantage of their widespread use.  The process of torrefaction allows to bring the characteristics of biofuel as close as possible to thermal coal.  Different degree of heat treatment of biomass leads to a product with different heating value.  Therefore, it is important to know the optimal mode of torrefaction, which will provide the best energy parameters of biofuels.Researches of torrefaction were carried out on the basis of educational and scientific laboratory "DAK GPS" of the State Agrarian and Engineering University in Podilia.  The kinetics of the relative mass of different types of biomass at different processing temperatures was considered.  The dependence of the degree of torrefaction on the heat treatment temperature is revealed. As shown by studies for most biomaterials of plant origin, we can distinguish the beginning of intensive transformation and its end, after which there is a sharp slowdown in weight loss, and, accordingly, and the energy density of the samples.  

2020 ◽  
Vol 989 ◽  
pp. 335-340
Author(s):  
P.L. Reznik ◽  
B.V. Ovsyannikov

Microstructure evolution during the homogenization heat treatment of an Al-Zn-Cu-Mg (AA7475, which is typically used for the manufacture of aircraft design) alloy, was investigated using a combination of light microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Ingots after different types (one-or two-steps treatments) of temperatures (from 380 to 510 °C) of homogenization and cooling conditions (cooling with an air or quenching to water) were investigated. The results show that the microstructure of ingot presents a typical microstructure with some isolated Al7Cu2Fe particles, which after homogenization almost remains in both the size and morphology. The structure ingot after homogenization below 400 °C contains secondary phases, based on η (MgZn2), S (Al2CuMg) and T (Al2Mg3Zn3) are distributed along the grain boundary. In the T (Al2Mg3Zn3) phase copper dissolves up to 30 wt.%. Then the increase in temperature and the complication of heat treatment of homogenization, which led to the complication of the kinetics of the evolution of inter-dendritic phases, were found. The two-steps homogenization has a better effect than a single homogenization, as its completely dissolution of non-equilibrium phases was established.


2012 ◽  
Vol 06 ◽  
pp. 385-390 ◽  
Author(s):  
UN BONG BAEK ◽  
SEOK CHEOL LEE ◽  
SEUNG HOON NAHM ◽  
YOUNG HYUN NAM

This paper reports that the Barkhausen noise method can be used to accurately characterize forged reactor vessels. The Charpy V-notch impact tests were conducted on the respective specimens with three different types of heat history. Various test results including fracture appearance transition temperature (FATT) were obtained. The Barkhausen noise voltage changed with heat treatment temperature (870~1000°C) and conditions (Tempered, PWHT). The fracture appearance transition temperature can be predicted using the Barkhausen noise voltage.


2013 ◽  
Vol 27 (10) ◽  
pp. 1079-1083
Author(s):  
Zhao-Hui LIU ◽  
Gen-Liang HOU ◽  
Xun-Jia SU ◽  
Feng GUO ◽  
Zhou XIAO ◽  
...  

2018 ◽  
Vol 69 (5) ◽  
pp. 1139-1144
Author(s):  
Iosif Lingvay ◽  
Adriana Mariana Bors ◽  
Livia Carmen Ungureanu ◽  
Valerica Stanoi ◽  
Traian Rus

For the purpose of using three different types of painting materials for the inner protection of the transformer vats, their behavior was studied under actual conditions of operation in the transformer (thermal stress in electro-insulating fluid based on the natural ester in contact with copper for electro-technical use and electro-insulating paper). By comparing determination of the content in furans products (HPLC technique) and gases formed (by gas-chromatography) in the electro-insulating fluid (natural ester with high oleic content) thermally aged at 130 �C to 1000 hours in closed glass vessels, it have been found that the presence the investigated painting materials lead to a change in the mechanism and kinetics of the thermo-oxidation processes. These changes are supported by oxygen dissolved in oil, what leads to decrease both to gases formation CO2, CO, H2, CH4, C2H4 and C2H6) and furans products (5-HMF, 2-FOL, 2 -FAL and 2-ACF). The painting materials investigated during the heat treatment applied did not suffer any remarkable structural changes affecting their functionality in the electro-insulating fluid based on vegetable esters.


Author(s):  
E. I. Maslikova ◽  
V. D. Andreeva ◽  
E. L. Alekseeva ◽  
Yu. A. Yakovlev

Research of hydrogen diffusion in VT6 alloy is carried out considering different types of heat treating and hydrogen charging. The influence of microalloying on the susceptibility to hydride formation and embrittlement of titanium alloys is analyzed, and also effects of an oxide film on hydrogen charging during heat treatment without protective atmosphere, are studied.


2009 ◽  
Vol 18 (12) ◽  
pp. 935-938
Author(s):  
H. Kobori ◽  
T. Asahi ◽  
Y. Yamasaki ◽  
A. Sugimura ◽  
T. Taniguchi ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 643
Author(s):  
Xiaoyu Wu ◽  
Shufeng Xie ◽  
Kangwei Xu ◽  
Lei Huang ◽  
Daling Wei ◽  
...  

Burning loss of graphene in the high-temperature plasma-spraying process is a critical issue, significantly limiting the remarkable performance improvement in graphene reinforced ceramic coatings. Here, we reported an effective approach to enhance the graphene retention, and thus improve the performance of plasma-sprayed alumina/graphene nanoplatelets (Al2O3/GNPs) coatings by heat treatment of agglomerated Al2O3/GNPs powders. The effect of powder heat treatment on the microstructure, GNPs retention, and electrical conductivity of Al2O3/GNPs coatings were systematically investigated. The results indicated that, with the increase in the powder heat treatment temperature, the plasma-sprayed Al2O3/GNPs coatings exhibited decreased porosity and improved adhesive strength. Thermogravimetric analysis and Raman spectra results indicated that increased GNPs retention from 12.9% to 28.4%, and further to 37.4%, as well as decreased structural defects, were obtained for the AG, AG850, and AG1280 coatings, respectively, which were fabricated by using AG powders without heat treatment, powders heat-treated at 850 °C, and powders heat-treated at 1280 °C. Moreover, the electrical conductivities of AG, AG850, and AG1280 coatings exhibited 3 orders, 4 orders, and 7 orders of magnitude higher than that of Al2O3 coating, respectively. Powder heat treatment is considered to increase the melting degree of agglomerated alumina particles, eventually leaving less thermal energy for GNPs to burn; thus, a high retention amount and structural integrity of GNPs and significantly enhanced electrical conductivity were achieved for the plasma-sprayed Al2O3/GNPs coatings.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1264
Author(s):  
Teng-Chun Yang ◽  
Tung-Lin Wu ◽  
Chin-Hao Yeh

The influence of heat treatment on the physico-mechanical properties, water resistance, and creep behavior of moso bamboo (Phyllostachys pubescens) was determined in this study. The results revealed that the density, moisture content, and flexural properties showed negative relationships with the heat treatment temperature, while an improvement in the dimensional stability (anti-swelling efficiency and anti-water absorption efficiency) of heat-treated samples was observed during water absorption tests. Additionally, the creep master curves of the untreated and heat-treated samples were successfully constructed using the stepped isostress method (SSM) at a series of elevated stresses. Furthermore, the SSM-predicted creep compliance curves fit well with the 90-day full-scale experimental data. When the heat treatment temperature increased to 180 °C, the degradation ratio of the creep resistance (rd) significantly increased over all periods. However, the rd of the tested bamboo decreased as the heat treatment temperature increased up to 220 °C.


Sign in / Sign up

Export Citation Format

Share Document