Treatment of the osteoma of the elites

1926 ◽  
Vol 22 (5-6) ◽  
pp. 740
Author(s):  
M. Friedlan

According to Petrov (Vesti. Khir., 1926, kn. 17-18) with mild and moderate forms of acute osteomyelitis, it is rational to push the diseased bone marrow out of the tubular bone. The technique consists in exposing the bone with a wide incision or two small incisions made above and below the lesion, after which two holes are drilled into the bone: one smaller, with a drill, and the other larger, with a milling cutter.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hideki Ueyama ◽  
Yoichi Ohta ◽  
Yuuki Imai ◽  
Akinobu Suzuki ◽  
Ryo Sugama ◽  
...  

Abstract Background Bone morphogenetic proteins (BMPs) induce osteogenesis in various environments. However, when BMPs are used alone in the bone marrow environment, the maintenance of new bone formation is difficult owing to vigorous bone resorption. This is because BMPs stimulate the differentiation of not only osteoblast precursor cells but also osteoclast precursor cells. The present study aimed to induce and maintain new bone formation using the topical co-administration of recombinant human BMP-2 (rh-BMP-2) and zoledronate (ZOL) on beta-tricalcium phosphate (β-TCP) composite. Methods β-TCP columns were impregnated with both rh-BMP-2 (30 µg) and ZOL (5 µg), rh-BMP-2 alone, or ZOL alone, and implanted into the left femur canal of New Zealand white rabbits (n = 56). The implanted β-TCP columns were harvested and evaluated at 3 and 6 weeks after implantation. These harvested β-TCP columns were evaluated radiologically using plane radiograph, and histologically using haematoxylin/eosin (H&E) and Masson’s trichrome (MT) staining. In addition, micro-computed tomography (CT) was performed for qualitative analysis of bone formation in each group (n = 7). Results Tissue sections stained with H&E and MT dyes revealed that new bone formation inside the β-TCP composite was significantly greater in those impregnated with both rh-BMP-2 and ZOL than in those from the other experimental groups at 3 and 6 weeks after implantations (p < 0.05). Micro-CT data also demonstrated that the bone volume and the bone mineral density inside the β-TCP columns were significantly greater in those impregnated with both rh-BMP-2 and ZOL than in those from the other experimental groups at 3 and 6 weeks after implantations (p < 0.05). Conclusions The topical co-administration of both rh-BMP-2 and ZOL on β-TCP composite promoted and maintained newly formed bone structure in the bone marrow environment.


2021 ◽  
pp. 036354652110141
Author(s):  
Liang Xu ◽  
Atsushi Urita ◽  
Tomohiro Onodera ◽  
Ryosuke Hishimura ◽  
Takayuki Nonoyama ◽  
...  

Background: Ultrapurified alginate (UPAL) gel implantation has been demonstrated as effective in cartilage repair for osteochondral defects; however, cell transplantation within UPAL gels would be required to treat larger defects. Hypothesis: The combination of UPAL gel and bone marrow aspirate concentrate (BMAC) would enhance cartilage repair and subchondral bone repair for large osteochondral defects. Study Design: Controlled laboratory study. Methods: A total of 104 osteochondral defects (1 defect per knee) of 52 rabbits were randomly divided into 4 groups (26 defects per group): defects without any treatment (Defect group), defects treated using UPAL gel alone (UPAL group), defects treated using UPAL gel containing allogenic bone marrow mesenchymal stromal cells (UPAL-MSC group), and defects treated using UPAL gel containing BMAC (UPAL-BMAC group). At 4 and 16 weeks postoperatively, macroscopic and histologic evaluations and measurements of repaired subchondral bone volumes of reparative tissues were performed. Collagen orientation and mechanical properties of the reparative tissue were assessed at 16 weeks. Results: The defects in the UPAL-BMAC group were repaired with hyaline-like cartilage with well-organized collagen structures. The histologic scores at 4 weeks were significantly higher in the UPAL-BMAC group (16.9 ± 2.0) than in the Defect group (4.7 ± 1.9; P < .05), the UPAL group (10.0 ± 3.3; P < .05), and the UPAL-MSC group (12.2 ± 2.9; P < .05). At 16 weeks, the score in the UPAL-BMAC group (24.4 ± 1.7) was significantly higher than those in the Defect group (9.0 ± 3.7; P < .05), the UPAL group (14.2 ± 3.9; P < .05), and the UPAL-MSC group (16.3 ± 3.6; P < .05). At 4 and 16 weeks, the macroscopic evaluations were significantly superior in the UPAL-BMAC group compared with the other groups, and the values of repaired subchondral bone volumes in the UPAL-BMAC group were significantly higher than those in the Defect and UPAL groups. The mechanical properties of the reparative tissues were significantly better in the UPAL-BMAC group than in the other groups. Conclusion: The implantation of UPAL gel containing BMAC-enhanced hyaline-like cartilage repair and subchondral bone repair of osteochondral defects in a rabbit knee model. Clinical Relevance: These data support the potential clinical application of 1-step treatment for large osteochondral defects using biomaterial implantation with cell transplantation.


1962 ◽  
Vol 203 (4) ◽  
pp. 693-696 ◽  
Author(s):  
Thomas F. Necheles

Myeloid marrow was rapidly removed from femurs of fasting young rabbits, sectioned, and incubated in Krebs-bicarbonate-CO2-oxygen buffer with appropriate C14-labeled precursors. All manipulations were designed to preserve the architecture of the tissue. After 1 hr the protein or nucleic acid-adenine was isolated and purified. Insulin, 0.01 U/ml added in vitro, stimulated histidine-2(ring)-C14 incorporation into protein by 26 ± 1.4%; alkali-treated insulin was inactive. Thyroxin elicited a 49.4 ± 2.1% stimulation at an optimum concentration of 10–7 m. Triiodothyronine, but not diiodothyronine, also had a significant effect. Insulin increased incorporation of carbon from adenosine-8-C14 into adenine of ribonucleic acid and deoxyribonucleic acid. Thyroxin, on the other hand, was without consistent effect on this process. Thyroxin stimulated significantly the incorporation of C14 of glycine-2-C14 into adenine. The possibility that part of the anabolic effect of thyroxin on bone marrow may arise from a stimulus to incorporation of precursors into purines is suggested.


Blood ◽  
1992 ◽  
Vol 80 (11) ◽  
pp. 2938-2942 ◽  
Author(s):  
BG Gordon ◽  
PI Warkentin ◽  
DD Weisenburger ◽  
JM Vose ◽  
WG Sanger ◽  
...  

Abstract We report nine children with relapsed (n = 8) or high-risk (n = 1) peripheral T-cell lymphoma (PTCL) who underwent autologous (n = 6) or allogeneic (n = 3) bone marrow transplantation (BMT). These children received transplants as part of a prospective phase I/II study of thioTEPA (TT) and total body irradiation (TBI) with escalating doses of VP-16. The median age of these patients at time of BMT was 6.5 years (range 2.5 years to 14 years). Three were transplanted with active disease after failing salvage chemotherapy. Of the other six, one was transplanted in first complete remission (CR) and five in second or subsequent CR. Of these nine patients, eight are free of disease a median of 25 months after BMT (range, 6 to 48 months), with an estimated 2-year relapse-free survival (RFS) of 89%. Six of these eight patients have been followed for 12 or more months after BMT, and in each their current remission exceeds their longest previous remission duration. The toxicity of the TT/TBI +/- VP-16 regimens was significant but manageable, predominantly consisting of severe mucositis. For a comparison, we reviewed retrospective data on the six additional children and adolescents with PTCL who underwent BMT during the 3-year period preceding this phase I/II study. The median age at BMT of these six patients was 19 years (range 15.5 years to 20 years). These patients were prepared for BMT with a variety of other regimens. One had no response to BMT and the other five relapsed at 1.5 to 5 months after BMT (median, 3 months) with an RFS of 0%. Our data suggest that thioTEPA plus TBI, with or without VP-16, is an effective preparative regimen for BMT for young patients with relapsed or high-stage PTCL and leads to prolonged RFS.


2005 ◽  
Vol 28 (10) ◽  
pp. 1018-1024 ◽  
Author(s):  
G. Giannini ◽  
M. Valbonesi ◽  
F. Morelli ◽  
P. Carlier ◽  
M.C. De Luigi ◽  
...  

Patients with extremely high triglyceride levels and associated lipemia are at high risk for acute pancreatitis. Two factors can increase triglyceride-rich lipoproteins; one is overproduction and other is a defect in clearance. Either mechanism can cause hypertriglyceridemia and both may exist simultaneously. Causes can be either primary or secondary. Plasmapheresis is efficacious for severe hypertryceridemia in patients who have not responded to previous therapies. We have treated 15 cases of hypertrygliceridemia complicating the course of patients receiving Cyclosporin A after bone marrow transplantation. Five patients were treated with plasmapheresis, the other ten with cascade filtration. The removal rate for triglycerides was 58.0% for patients treated by cascade filtration and 63.5% for patients treated by plasmapheresis. The removal rates for triglycerides were low possibly as a consequence of early saturation of the filter.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Daphne de Camargo Reis Mello ◽  
Lais Morandini Rodrigues ◽  
Fabia Zampieri D’Antola Mello ◽  
Thais Fernanda Gonçalves ◽  
Bento Ferreira ◽  
...  

Abstract Background An effective biomaterial for bone replacement should have properties to avoid bacterial contamination and promote bone formation while inducing rapid cell differentiation simultaneously. Bone marrow stem cells are currently being investigated because of their known potential for differentiation in osteoblast lineage. This makes these cells a good option for stem cell-based therapy. We have aimed to analyze, in vitro, the potential of pure titanium (Ti), Ti-35Nb-7Zr alloy (A), niobium (Nb), and zirconia (Zr) to avoid the microorganisms S. aureus (S.a) and P. aeruginosa (P.a). Furthermore, our objective was to evaluate if the basic elements of Ti-35Nb-7Zr alloy have any influence on bone marrow stromal cells, the source of stem cells, and observe if these metals have properties to induce cell differentiation into osteoblasts. Methods Bone marrow stromal cells (BMSC) were obtained from mice femurs and cultured in osteogenic media without dexamethasone as an external source of cell differentiation. The samples were divided into Ti-35Nb-7Zr alloy (A), pure titanium (Ti), Nb (niobium), and Zr (zirconia) and were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). After predetermined periods, cell interaction, cytotoxicity, proliferation, and cell differentiation tests were performed. For monotypic biofilm formation, standardized suspensions (106 cells/ml) with the microorganisms S. aureus (S.a) and P. aeruginosa (P.a) were cultured for 24 h on the samples and submitted to an MTT test. Results All samples presented cell proliferation, growth, and spreading. All groups presented cell viability above 70%, but the alloy (A) showed better results, with statistical differences from Nb and Zr samples. Zr expressed higher ALP activity and was statistically different from the other groups (p < 0.05). In contrast, no statistical difference was observed between the samples as regards mineralization nodules. Lower biofilm formation of S.a and P.a. was observed on the Nb samples, with statistical differences from the other samples. Conclusion Our results suggest that the basic elements present in the alloy have osteoinductive characteristics, and Zr has a good influence on bone marrow stromal cell differentiation. We also believe that Nb has the best potential for reducing the formation of microbial biofilms.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242488
Author(s):  
Satoshi Nishiwaki ◽  
Shigeki Saito ◽  
Kyosuke Takeshita ◽  
Hidefumi Kato ◽  
Ryuzo Ueda ◽  
...  

Macrophages play an indispensable role in both innate and acquired immunity, while the persistence of activated macrophages can sometimes be harmful to the host, resulting in multi-organ damage. Macrophages develop from monocytes in the circulation. However, little is known about the organ affinity of macrophages in the normal state. Using in vivo imaging with XenoLight DiR®, we observed that macrophages showed strong affinity for the liver, spleen and lung, and weak affinity for the gut and bone marrow, but little or no affinity for the kidney and skin. We also found that administered macrophages were still alive 168 hours after injection. On the other hand, treatment with clodronate liposomes, which are readily taken up by macrophages via phagocytosis, strongly reduced the number of macrophages in the liver, spleen and lung.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4580-4580
Author(s):  
Monica M Rivera Franco ◽  
Eucario Leon Rodriguez ◽  
Diana Gomez Martin ◽  
Javier Merayo Chalico ◽  
Jorge Alcocer Varela

Abstract Background Graft versus host disease (GVHD) is the major complication of allogeneic hematopoietic stem cell transplantation. It is characterized by an imbalance between the effector and regulatory arms of the immune system which results in the over production of inflammatory cytokines. Regulatory T (T regs) cells and T helper 17 (Th17) cells are two recently described lymphocyte subsets with opposing actions. Both can develop from naïve CD4+ T cell precursors under the influence of TGFβ1. Th17 lymphocytes, are key effector cells in rodent models of human diseases including GVHD. The other subset, T regs, is essential for dominant immunologic tolerance. At our institution, patients transplanted using G-CSF primed bone marrow (G-BM), have a lower incidence of acute and chronic GVHD when compared to those transplanted with peripheral blood and not primed bone marrow. Some microenvironment characteristics of this hematopoietic stem cells (HSC) source remain unknown, as well as the difference between Tregs, Th17 and cytokine levels in patients who develop GVHD and those who do not. Objective To analyze the characteristics of thirty-eight G-BM donor samples, identifying lymphocytes subsets and associated cytokines, and comparing patients who developed chronic GVHD (cGVHD) and those who did not. Materials and Methods A prospective analysis was performed in 38 G-BM samples from donors from 1999 to 2016. Mononuclear cells were defrosted, counted, and viability was evaluated. A 24 hour resting with RPMI, and posterior activation with PMA (50 ng/ml) for 48 hours was performed. Cells were harvested and cytokines were evaluated by flow cytometry (CBA assay). From each sample, one million mononuclear cells were permeabilized, fixed, and stained with CD4-FITC, IL17A-PE, IFN-γ APC, and IL-4 PECy7, for their posterior phenotipication by flow cytometry. The samples were obtained in a BD LSR Fortessa cytometry, and analyzed with the Flow-Jo software. Patients (recipients) information was analyzed using SPSS v.21. Results GVHD incidence was reported as following: Three (8%) patients developed acute GVHD (2 grade II, and 1 grade IV), 11 patients (29%) developed chronic GVHD (9% extensive, and 91% limited), and 24 patients did not present either. Mononuclear cells from G-BM from donors of patients who developed cGVHD showed a pro inflammatory response, characterized by an increased concentration of IL-17A (15.5 vs 0.71 pg/mL, p=0.013), TNF-α (80.27 vs 0.13 pg/mL, p=0.001), and IL-6 (4953.6 vs 11.75 pg/mL, p=0.025), after a mitogenic stimulation, compared to cells from donors of patients who did not developed GVHD. On the other hand, a decreased IL-10 production (2.62 vs 52.81 pg/mL, p=0.001) was documented in mononuclear cells from donors of patients who developed chronic GVHD, compared to donor cells of patients who did not. No significant difference in the production of IL-2, IL-4, and IFN-γ was observed. There was no difference in Th1 and Th2 between both groups, but mononuclear cells from donors of patients who developed chronic GVHD had a higher percentage of Th17 (1.02% vs 0.46%, p<0.001), and less Tregs (0.88% vs 1.95%, p<0.001), compared to those who did not developed GVHD. Conclusions Patients who develop cGVHD (29%) are characterized by a pro inflammatory response with an increased production of IL-17A, IL-6, and IFN-γ, and also a major percentage of Th17 cells. Also, a decreased suppressive response was documented with reduced IL-10 and Tregs levels. The low incidence of cGVHD show that G-CSF primed bone marrow is an excellent source for allogeneic HSC transplantations, and would be useful to compare these results with other HSC sources. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1964 ◽  
Vol 24 (3) ◽  
pp. 254-266 ◽  
Author(s):  
G. KEISER ◽  
H. COTTIER ◽  
N. ODARTCHENKO ◽  
V. P. BOND

Abstract The origin and fate of small lymphoid cells in the dog bone marrow were studied autoradiographically by observing the effect of clamping of the femoral artery during in vivo availability of H3-thymidine. Heavily labeled small lymphoid cells appeared in the bone marrow of the clamped leg 3 hours after injection of the tracer and increased in number up to 6 days. The labeling indices of these cells, however, were significantly lower than those of control marrow. A possible interpretation is that dog bone marrow contains two populations of small lymphoid cells, one migrating into the marrow via the blood stream, the other originating from local precursor cells within the marrow. There was no evidence for a transformation of migrated small lymphoid cells into erythroblasts during the first 48 hours after injection of H3-thymidine.


Sign in / Sign up

Export Citation Format

Share Document