An Automated Method for Developing a Catalog of Small Earthquakes Using Data of a Dense Seismic Array and Nearby Stations

2020 ◽  
Vol 91 (5) ◽  
pp. 2862-2871 ◽  
Author(s):  
Yifang Cheng ◽  
Yehuda Ben-Zion ◽  
Florent Brenguier ◽  
Christopher W. Johnson ◽  
Zefeng Li ◽  
...  

Abstract We propose a new automated procedure for using continuous seismic waveforms recorded by a dense array and its nearby regional stations for P-wave arrival identification, location, and magnitude estimation of small earthquakes. The method is illustrated with a one-day waveform dataset recorded by a dense array with 99 sensors near Anza, California, and 24 surrounding regional stations within 50 km of the dense array. We search a wide range of epicentral locations and apparent horizontal slowness values (0–15  s/km) in the 15–25 Hz range and time shift the dense array waveforms accordingly. For each location–slowness combination, the average neighboring station waveform similarity (avgCC) of station pairs <150  m apart is calculated for each nonoverlapping 0.5 s time window. Applying the local maximum detection algorithm gives 966 detections. Each detection has a best-fitting location–slowness combination with the largest avgCC. Of 331 detections with slowness <0.4  s/km, 324 (about six times the catalog events and 98% accuracy) are found to be earthquake P-wave arrivals. By associating the dense array P-wave arrivals and the P- and S-wave arrivals from the surrounding stations using a 1D velocity model, 197 detections (∼4 times of the catalog events) have well-estimated locations and magnitudes. Combining the small spacing of the array and the large aperture of the regional stations, the method achieves automated earthquake detection and location with high sensitivity in time and high resolution in space. Because no preknowledge of seismic-waveform features or local velocity model is required for the dense array, this automated algorithm can be robustly implemented in other locations.

2011 ◽  
Vol 267 ◽  
pp. 462-467
Author(s):  
Nan Quan Zhou

The paper presents a P-wave detection algorithm based on fitting function in the optimal interval. In the algorithm we used quadratic function to fit the P wave by this means of least square method in every interval, which was shifted in local range. Then we found the optimal fitting interval of P wave by comparing the error of fitting. Finally, we obtained the characteristic points of P wave by using the fitting function to fit P wave in the optimal interval. The performance of the algorithm tested using the records of the MIT-BIH database was effective and accurate. The algorithm on the wide range of heart rate variation and small P wave of ECG P-wave detection has good effect. Also it has some capabilities of anti-interference, particularly the false dismissal probability is quite low.


2019 ◽  
Vol 28 (3) ◽  
pp. 1257-1267 ◽  
Author(s):  
Priya Kucheria ◽  
McKay Moore Sohlberg ◽  
Jason Prideaux ◽  
Stephen Fickas

PurposeAn important predictor of postsecondary academic success is an individual's reading comprehension skills. Postsecondary readers apply a wide range of behavioral strategies to process text for learning purposes. Currently, no tools exist to detect a reader's use of strategies. The primary aim of this study was to develop Read, Understand, Learn, & Excel, an automated tool designed to detect reading strategy use and explore its accuracy in detecting strategies when students read digital, expository text.MethodAn iterative design was used to develop the computer algorithm for detecting 9 reading strategies. Twelve undergraduate students read 2 expository texts that were equated for length and complexity. A human observer documented the strategies employed by each reader, whereas the computer used digital sequences to detect the same strategies. Data were then coded and analyzed to determine agreement between the 2 sources of strategy detection (i.e., the computer and the observer).ResultsAgreement between the computer- and human-coded strategies was 75% or higher for 6 out of the 9 strategies. Only 3 out of the 9 strategies–previewing content, evaluating amount of remaining text, and periodic review and/or iterative summarizing–had less than 60% agreement.ConclusionRead, Understand, Learn, & Excel provides proof of concept that a reader's approach to engaging with academic text can be objectively and automatically captured. Clinical implications and suggestions to improve the sensitivity of the code are discussed.Supplemental Materialhttps://doi.org/10.23641/asha.8204786


2019 ◽  
Vol 24 (1) ◽  
pp. 101-120
Author(s):  
Kajetan Chrapkiewicz ◽  
Monika Wilde-Piórko ◽  
Marcin Polkowski ◽  
Marek Grad

AbstractNon-linear inverse problems arising in seismology are usually addressed either by linearization or by Monte Carlo methods. Neither approach is flawless. The former needs an accurate starting model; the latter is computationally intensive. Both require careful tuning of inversion parameters. An additional challenge is posed by joint inversion of data of different sensitivities and noise levels such as receiver functions and surface wave dispersion curves. We propose a generic workflow that combines advantages of both methods by endowing the linearized approach with an ensemble of homogeneous starting models. It successfully addresses several fundamental issues inherent in a wide range of inverse problems, such as trapping by local minima, exploitation of a priori knowledge, choice of a model depth, proper weighting of data sets characterized by different uncertainties, and credibility of final models. Some of them are tackled with the aid of novel 1D checkerboard tests—an intuitive and feasible addition to the resolution matrix. We applied our workflow to study the south-western margin of the East European Craton. Rayleigh wave phase velocity dispersion and P-wave receiver function data were gathered in the passive seismic experiment “13 BB Star” (2013–2016) in the area of the crust recognized by previous borehole and refraction surveys. Final models of S-wave velocity down to 300 km depth beneath the array are characterized by proximity in the parameter space and very good data fit. The maximum value in the mantle is higher by 0.1–0.2 km/s than reported for other cratons.


Geophysics ◽  
1990 ◽  
Vol 55 (6) ◽  
pp. 646-659 ◽  
Author(s):  
C. Frasier ◽  
D. Winterstein

In 1980 Chevron recorded a three‐component seismic line using vertical (V) and transverse (T) motion vibrators over the Putah sink gas field near Davis, California. The purpose was to record the total vector motion of the various reflection types excited by the two sources, with emphasis on converted P‐S reflections. Analysis of the conventional reflection data agreed with results from the Conoco Shear Wave Group Shoot of 1977–1978. For example, the P‐P wave section had gas‐sand bright spots which were absent in the S‐S wave section. Shot profiles from the V vibrators showed strong P‐S converted wave events on the horizontal radial component (R) as expected. To our surprise, shot records from the T vibrators showed S‐P converted wave events on the V component, with low amplitudes but high signal‐to‐noise (S/N) ratios. These S‐P events were likely products of split S‐waves generated in anisotropic subsurface media. Components of these downgoing waves in the plane of incidence were converted to P‐waves on reflection and arrived at receivers in a low‐noise time window ahead of the S‐S waves. The two types of converted waves (P‐S and S‐P) were first stacked by common midpoint (CMP). The unexpected S‐P section was lower in true amplitude but much higher in S/N ratio than the P‐S section. The Winters gas‐sand bright spot was missing on the converted wave sections, mimicking the S‐S reflectivity as expected. CRP gathers were formed by rebinning data by a simple ray‐tracing formula based on the asymmetry of raypaths. CRP stacking improved P‐S and S‐P event resolution relative to CMP stacking and laterally aligned structural features with their counterparts on P and S sections. Thus, the unexpected S‐P data provided us with an extra check for our converted wave data processing.


1995 ◽  
Vol 09 (12) ◽  
pp. 1429-1451 ◽  
Author(s):  
WŁODZIMIERZ SALEJDA

The microscopic harmonic model of lattice dynamics of the binary chains of atoms is formulated and studied numerically. The dependence of spring constants of the nearest-neighbor (NN) interactions on the average distance between atoms are taken into account. The covering fractal dimensions [Formula: see text] of the Cantor-set-like phonon spec-tra (PS) of generalized Fibonacci and non-Fibonaccian aperiodic chains containing of 16384≤N≤33461 atoms are determined numerically. The dependence of [Formula: see text] on the strength Q of NN interactions and on R=mH/mL, where mH and mL denotes the mass of heavy and light atoms, respectively, are calculated for a wide range of Q and R. In particular we found: (1) The fractal dimension [Formula: see text] of the PS for the so-called goldenmean, silver-mean, bronze-mean, dodecagonal and Severin chain shows a local maximum at increasing magnitude of Q and R>1; (2) At sufficiently large Q we observe power-like diminishing of [Formula: see text] i.e. [Formula: see text], where α=−0.14±0.02 and α=−0.10±0.02 for the above specified chains and so-called octagonal, copper-mean, nickel-mean, Thue-Morse, Rudin-Shapiro chain, respectively.


Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. T243-T255 ◽  
Author(s):  
James W. D. Hobro ◽  
Chris H. Chapman ◽  
Johan O. A. Robertsson

We present a new method for correcting the amplitudes of arrivals in an acoustic finite-difference simulation for elastic effects. In this method, we selectively compute an estimate of the error incurred when the acoustic wave equation is used to approximate the behavior of the elastic wave equation. This error estimate is used to generate an effective source field in a second acoustic simulation. The result of this second simulation is then applied as a correction to the original acoustic simulation. The overall cost is approximately twice that of an acoustic simulation but substantially less than the cost of an elastic simulation. Because both simulations are acoustic, no S-waves are generated, so dispersed converted waves are avoided. We tested the characteristics of the method on a simple synthetic model designed to simulate propagation through a strong acoustic impedance contrast representative of sedimentary geology. It corrected amplitudes to high accuracy for reflected arrivals over a wide range of incidence angles. We also evaluated results from simulations on more complex models that demonstrated that the method was applicable in realistic sedimentary models containing a wide range of seismic contrasts. However, its accuracy was reduced for wide-angle reflections from very high impedance contrasts such as a shallow top-salt interface. We examined the influence of modeling at coarse grid resolutions, in which converted S-waves in the equivalent elastic simulation are dispersed. These results provide some validation for the accuracy of the method when applied using finite-difference grids designed for acoustic modeling. The method appears to offer a cost-effective means of modeling elastic amplitudes for P-wave arrivals in a useful range of velocity models. It has several potential applications in imaging and inversion.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Christopher G. Cooley ◽  
Tan Chai

This study investigates the vibration of and power harvested by typical electromagnetic and piezoelectric vibration energy harvesters when applied to vibrating host systems that rotate at constant speed. The governing equations for these electromechanically coupled devices are derived using Newtonian mechanics and Kirchhoff's voltage law. The natural frequency for these devices is speed-dependent due to the centripetal acceleration from their constant rotation. Resonance diagrams are used to identify excitation frequencies and speeds where these energy harvesters have large amplitude vibration and power harvested. Closed-form solutions are derived for the steady-state response and power harvested. These devices have multifrequency dynamic response due to the combined vibration and rotation of the host system. Multiple resonances are possible. The average power harvested over one oscillation cycle is calculated for a wide range of operating conditions. Electromagnetic devices have a local maximum in average harvested power that occurs near a specific excitation frequency and rotation speed. Piezoelectric devices, depending on their mechanical damping, can have two local maxima of average power harvested. Although these maxima are sensitive to small changes in the excitation frequency, they are much less sensitive to small changes in rotation speed.


2021 ◽  
Author(s):  
Anke Dannowski ◽  
Heidrun Kopp ◽  
Ingo Grevemeyer ◽  
Grazia Caielli ◽  
Roberto de Franco ◽  
...  

<p>The Ligurian Basin is located north-west of Corsica at the transition from the western Alpine orogen to the Apennine system. The Back-arc basin was generated by the southeast retreat of the Apennines-Calabrian subduction zone. The opening took place from late Oligocene to Miocene. While the extension led to extreme continental thinning little is known about the style of back-arc rifting. Today, seismicity indicates the closure of this back-arc basin. In the basin, earthquake clusters occur in the lower crust and uppermost mantle and are related to re-activated, inverted, normal faults created during rifting.</p><p>To shed light on the present day crustal and lithospheric architecture of the Ligurian Basin, active seismic data have been recorded on short period ocean bottom seismometers in the framework of SPP2017 4D-MB, the German component of AlpArray. An amphibious refraction seismic profile was shot across the Ligurian Basin in an E-W direction from the Gulf of Lion to Corsica. The profile comprises 35 OBS and three land stations at Corsica to give a complete image of the continental thinning including the necking zone.</p><p>The majority of the refraction seismic data show mantle phases with offsets up to 70 km. The arrivals of seismic phases were picked and used to generate a 2-D P-wave velocity model. The results show a crust-mantle boundary in the central basin at ~12 km depth below sea surface. The P-wave velocities in the crust reach 6.6 km/s at the base. The uppermost mantle shows velocities >7.8 km/s. The crust-mantle boundary becomes shallower from ~18 km to ~12 km depth within 30 km from Corsica towards the basin centre. The velocity model does not reveal an axial valley as expected for oceanic spreading. Further, it is difficult to interpret the seismic data whether the continental lithosphere was thinned until the mantle was exposed to the seafloor. However, an extremely thinned continental crust indicates a long lasting rifting process that possibly did not initiate oceanic spreading before the opening of the Ligurian Basin stopped. The distribution of earthquakes and their fault plane solutions, projected along our seismic velocity model, is in-line with the counter-clockwise opening of the Ligurian Basin.</p>


2021 ◽  
Author(s):  
Subhadeep Sarkar ◽  
Mathias Horstmann ◽  
Tore Oian ◽  
Piotr Byrski ◽  
George Lawrence ◽  
...  

Abstract One of the crucial components of well integrity evaluation in offshore drilling is to determine the cement bond quality assuring proper hydraulic sealing. On the Norwegian Continental Shelf (NCS) an industry standard as informative reference imposes verification of cement length and potential barriers using bonding logs. Traditionally, for the last 50 years, wireline (WL) sonic tools have been extensively used for this purpose. However, the applicability of logging-while-drilling (LWD) sonic tools for quantitative cement evaluation was explored in the recent development drilling campaign on the Dvalin Field in the Norwegian Sea, owing to significant advantages on operational efficiency and tool conveyance in any well trajectory. Cement bond evaluation from conventional peak-to-peak amplitude method has shown robust results up to bond indexes of 0.6 for LWD sonic tools. Above this limit, the casing signal is smaller than the collar signal and the amplitude method loses sensitivity to bonding. This practical challenge in the LWD realm was overcome through the inclusion of attenuation rate measurements, which responds accordingly in higher bonding environments. The two methods are used in a hybrid approach providing a full range quantitative bond index (QBI) introduced by Izuhara et al. (2017). In order to conform with local requirements related to well integrity and to ascertain the QBI potential from LWD monopole sonic, a wireline cement bond log (CBL) was acquired in the first well of the campaign for comparison. This enabled the strategic deployment of LWD QBI service in subsequent wells. LWD sonic monopole data was acquired at a controlled speed of 900ft/h. The high-fidelity waveforms were analyzed in a suitable time window and both amplitude- and attenuation-based bond indexes were derived. The combined hybrid bond index showed an excellent match with the wireline reference CBL, both in zones of high as well as lower cement bonding. The presence of formation arrivals was also in good correlation with zones of proper bonding distinguishable on the QBI results. This established the robustness of the LWD cement logging and ensured its applicability in the rest of the campaign which was carried out successfully. While the results from LWD cement evaluation service are omnidirectional, it comes with a wide range of benefits related to rig cost or conveyance in tough borehole trajectories. Early evaluation of cement quality by LWD sonic tools helps to provide adequate time for taking remedial actions if necessary. The LWD sonic as part of the drilling BHA enables this acquisition and service in non-dedicated runs, with the possibility of multiple passes for observing time-lapse effects. Also, the large sizes of LWD tools relative to the wellbore ensures a lower signal attenuation in the annulus and more effective stabilization, thereby providing a reliable bond index.


1984 ◽  
Vol 74 (4) ◽  
pp. 1263-1274
Author(s):  
Lawrence H. Jaksha ◽  
David H. Evans

Abstract A velocity model of the crust in northwestern New Mexico has been constructed from an interpretation of direct, refracted, and reflected seismic waves. The model suggests a sedimentary section about 3 km thick with an average P-wave velocity of 3.6 km/sec. The crystalline upper crust is 28 km thick and has a P-wave velocity of 6.1 km/sec. The lower crust below the Conrad discontinuity has an average P-wave velocity of about 7.0 km/sec and a thickness near 17 km. Some evidence suggests that velocity in both the upper and lower crust increases with depth. The P-wave velocity in the uppermost mantle is 7.95 ± 0.15 km/sec. The total crustal thickness near Farmington, New Mexico, is about 48 km (datum = 1.6 km above sea level), and there is evidence for crustal thinning to the southeast.


Sign in / Sign up

Export Citation Format

Share Document