scholarly journals PERANCANGAN ALAT POMPA AIR DENGAN SISTEM RENDAM PENGGERAKNYA MENGGUNAKAN MOTOR LISTRIK

2020 ◽  
Vol 3 (2) ◽  
pp. 92
Author(s):  
Rahmad Syah

Abstract: The pump is a liquid suction device where its function is to drain a liquid from an area of small pressure to an area of large pressure. Submersible pump (submersible pump) is a type of pump where the work system is placed in full water, the pump is damaged if the water is not in full condition. This type of pump must have a drinking water level so that the pump can operate properly, and the life of the pump can last a long time. The submersible pump is one type of centrifugal pump. The centrifugal pump has a way of operating, the change from the fluid velocity then changes to moving as dynamically as possible through the vanes experiencing rotation in the pump housing. Keyword: Pump, Water, Centrifugal, Immerse

1997 ◽  
Vol 35 (7) ◽  
pp. 243-250 ◽  
Author(s):  
Shigekazu Nakano ◽  
Tomoko Fukuhara ◽  
Masami Hiasa

It has been widely recognized that trihalomethanes (THMs) in drinking water pose a risk to human health. THMs can be removed to a certain extent by the conventional point-of-use (POU) unit which is composed of activated carbon (AC) and microfilter. But it's life on THMs is relatively shorter than on residual chlorine or musty odor. To extent the life of AC adsorber, pressure and thermal swing adsorption (PTSA) was applied by preferential regeneration of chloroform. PTSA was effective to remove THMs, especially chloroform. Adsorption isotherms of chloroform at 25 and 70°C showed a remarkable difference so that thermal swing was considered effective. Chloroform was also desorbed by reducing pressure. By vacuum heating at 70°C, chloroform was almost desorbed from AC and reversible adsorption was considered possible. A prototype of POU unit with PTSA was proposed. Regeneration mode would consist of dewatering, vacuum heating and cooling (backwashing). The unit was maintained in bacteriostatic condition and could be used for a long time without changing an AC cartridge.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Heba H El-Morsy ◽  
Wesam El-Bakly ◽  
Amany H Hasanin ◽  
May Hamza ◽  
M Abdel-Bary

Abstract Clinical observations recognized the co-existence and interactions of pain and depression a long time, ago. The aim of this work was to study the effect of ibuprofen and fluoxetine on BCGinduced depressive-like behaviour, on formalin-induced pain, as well as on mechanical allodynia after planter incision in mice. BCG induced a depressive behaviour that was seen in the forced swim test (FST) and the tail suspension test (TST). It also induced a decrease in pain-related behaviour in the formalin test, and an increase in the baseline in mechanical allodynia test compared to the control group. Fluoxetine (80 mg/L of drinking water) showed a significant decrease in the immobility time in the FST and TST and enhanced pain related behaviour in formalin test in the BCG-inoculated group. However, it did not affect the increase in the pain threshold in the planter incision allodynia model. Adding ibuprofen to drinking water (0.2 g/L of drinking water), reversed the depressive like behaviour induced by BCG and enhanced pain-related behaviour in formalin test, in both the total pain-related behaviour and phase 2. It also prevented the increase in the base line induced by BCG. On the other hand, the incisional pain model was not affected by BCG inoculation except at the 2-hour time point, where it showed hypoalgesia, as well.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1628 ◽  
Author(s):  
Hongliang Wang ◽  
Bing Long ◽  
Chuan Wang ◽  
Chen Han ◽  
Linjian Li

An impeller blade with a slot structure can affect the velocity distribution in the impeller flow passage of the centrifugal pump, thus affecting the pump’s performance. Various slot structure geometric parameter combinations were tested in this study to explore this relationship: slot position p, slot width b1, slot deflection angle β, and slot depth h with (3–4) levels were selected for each factor on an L16 orthogonal test table. The results show that b1 and h are the major factors influencing pump performance under low and rated flow conditions, while p is the major influencing factor under the large flow condition. The slot structure close to the front edge of the impeller blade can change the low-pressure region of the suction inlet of the impeller flow passage, thus improving the fluid velocity distribution in the impeller. Optimal slot parameter combinations according to the actual machining precision may include a small slot width b1, slot depth h of ¼ b, slot deflection angle β of 45°–60°, and slot position p close to the front edge of the blade at 20–40%.


2022 ◽  
Vol 1 (15) ◽  
pp. 100-103
Author(s):  
Dmitriy Shurupov ◽  
Nina Sosnovskaya ◽  
Nikolay Korchevin ◽  
Aleksey Bal'chugov

The article presents the results of a study of the process of obtaining a shiny nickel coating on steel from sulfuric acid electrolyte in the presence of an organic brightening additive - a de-rivative of rubeanhydric acid - under different modes of electrolysis. The expediency of using a nickel coating for corrosion protection of the housing of a high-pressure centrifugal pump has been substantiated


2021 ◽  
Vol 11 (10) ◽  
Author(s):  
Abdelkader T. Ahmed ◽  
Mohammed Emad ◽  
Mohammed A. Bkary

AbstractMany people prefer to drink bottled water instead off the tap water. The bottled water is stored in the plastic bottles sometimes for long time. These plastic bottles might leach out some harmful materials into the water especially when exposed to temperature alteration, which may affect human health. This research work focused on investigating the effect of changing temperature on the bottled water quality. The work studied the effect of heating water in plastic bottles by sun, oven, and microwave. The study included also the impact of cooling and freezing the bottled waters. Results showed that temperature alterations caused changes in some physicochemical properties of bottled waters such as decreasing the values of pH and TDS and increasing levels of fluoride and chloride. In addition, the concentration levels of some physiochemical parameters exceeded the permissible values for drinking water. With temperature alterations, all levels of heavy metals in bottled waters were minimal except some small concentrations of copper and zinc. Results confirmed also differences in behavior between the bottled water brands exposed to the same temperature alterations. Heating bottled waters above 50 °C is alarming problem on the water quality. This is because above this degree, many alternations were observed in the water content. The outcomes of this work are useful for improving the current legislation on bottled waters and their storage.


Author(s):  
Christo Biji ◽  
Vandana C P

The drinking water is one of the main problems affecting many countries now, in the same way we are not actually using the rain water properly. The misuse of water leads no many problems like uncontrolled water flow etc. Last year 2018 Kerala undergrown a deep flood because of huge rain due to that all the dams in Kerala opened simultaneously. It creates a huge flood in Kerala. Around 370 peoples died in Kerala due to this flood. The main reason is people are not aware of dam opening so the peoples near to the river all are washed off. Most of the dams are not having a digital sensing for water level. All the dams are having only scale measurement so failed to give information about damn opening. Water level monitoring system solves this problem It will give right information about water level in reservoir and it will avoid wastage water in tank.


1978 ◽  
Vol 89 (2) ◽  
pp. 241-250 ◽  
Author(s):  
R. Phythian ◽  
W. D. Curtis

The problem considered is the diffusion of a passive scalar in a ‘fluid’ in random motion when the fluid velocity field is Gaussian and statistically homogeneous, isotropic and stationary. A self-consistent expansion for the effective long-time diffusivity is obtained and the approximations derived from this series by retaining up to three terms are explicitly calculated for simple idealized forms of the velocity correlation function for which numerical simulations are available for comparison for zero molecular diffusivity. The dependence of the effective diffusivity on the molecular diffusivity is determined within this idealization. The results support Saffman's contention that the molecular and turbulent diffusion processes interfere destructively, in the sense that the total effective diffusivity about a fixed point is less than that which would be obtained if the two diffusion processes acted independently.


1984 ◽  
Vol 106 (3) ◽  
pp. 362-368
Author(s):  
J. F. Kiefner ◽  
T. P. Forte

An analytical model is presented for predicting hydrostatic retest intervals in liquid pipelines which are subjected to frequent large pressure cycles. The model utilizes pressure cycle history, hydrostatic test history, and fatigue crack growth rate data for the pipe material to calculate time to failure for the largest possible defect which could have survived a previous hydrostatic test. An example problem is described which shows the value of maximizing the margin between test pressure and operating pressure in order to achieve long time intervals between tests.


1970 ◽  
Vol 38 ◽  
pp. 45-51
Author(s):  
Mohammad Ali ◽  
Akira Umemura

Contraction of a liquid sheet of an incompressible Newtonian fluid in a passive ambient fluid is studied computationally to provide insights into the dynamics of capillary wave created during contraction. The problem composed of the Navier-Stokes system is associated with initial and boundary conditions that govern the time evolution of the capillary wave and the pressure and velocity fields within it. The correctness of the algorithm is verified with the data of experiment. It can be found that the prediction of the computation agrees well with the experiment. The algorithm is capable of capturing the capillary wave and therefore it is used to study the characteristic phenomena of that wave created on the surface of the liquid. Results show that the capillary wave is radiated from the tip of the liquid sheet caused by surface tension. The amplitude of the tip wave is much larger than any other waves and the asymptotic approach of the wave peaks can be observed during the propagation of waves. The tip wave contains the highest pressure and gradually the peak values of both high and low pressures decrease with the propagation of waves. Fluid velocity is motivated by both pressure due to surface tension and recirculation in peak and trough of the wave. During the contraction of the liquid sheet, the tip velocity is not uniform. Initially the length of the sheet increases a little and very soon the contraction occurs and continues. After long time, the gradient of tip velocity becomes very small. Keywords: Capillary wave, liquid sheet.DOI: 10.3329/jme.v38i0.900 Journal of Mechanical Engineering Vol.38 Dec. 2007 pp.45-51  


Author(s):  
M. J. R. Bardeleben ◽  
D. S. Weaver

This paper presents the results of a theoretical and experimental investigation into the acoustic scattering matrix for a centrifugal pump. Background is provided which examines past research into acoustic two-port models, illustrating the benefits and laying the groundwork for the current incarnation of the scattering matrix. The results reveal that the traditional form of the transmission matrix is not adequate for predicting the parameters of the scattering matrix and a new form is suggested. With a simple modification, the predicted values successfully capture the trend in the experimental data. The presented research is still ongoing, looking to improve the model by including the compliance of the pump housing and inertial effects at the pump ports.


Sign in / Sign up

Export Citation Format

Share Document