scholarly journals Assessment of Microbial and Heavy Metal Concentration per Distance and Depth at a Municipal Solid Waste Landfill

2014 ◽  
Vol 27 ◽  
pp. 1-13
Author(s):  
O.T. Ogunmodede ◽  
A.A. Ojo ◽  
O.L. Adebayo

The field study involved 4 sites and 15 samples according to the wind directions: North, East, South and West. The analysis was conducted through the use of Atomic Absorption spectroscopy (AAS). Ten types of heavy metals were identified as indicators for pollution namely Mg, Ca, Mn, Fe, Cu, Zn, Pb, Ni, Cr, and Cd. The results indicated that the concentration of Fe was the most dominant per specific distances and depths and exceeded the minimum standard in North, East and West directions. While Cu was the second most dominant with concentration exceeding minimum standard per specific distance and depth, mainly in the West direction. The results have shown presence of bacterial species including Pseudomonas, Mirococcus, Actinomyces, Neisseria, Bacillus and Klebsiella. These pathogens can infect wounds and cause sepsis and mortality and can even occur with such organisms to cause secondary infection. These groups of organisms are almost impossible to control since they are ubitiquous

2017 ◽  
Vol 2 (3) ◽  
pp. 156
Author(s):  
S.A. Bhutada ◽  
S.B. Dahikar

At present various microorganisms are used for bioremediation of heavy metals from soil and water bodies. The aim of present work was to isolate the potential heavy metal degrading organisms and to apply for bioremediation of heavy metals from the domestic as well as industrial waste. The study involves the isolation of the bacterial species residing the natural habitat of such environments and screening of these isolates to degrade different heavy metals such as Cu, Cd, Hg, Ni, and Zn  up to the concentration 2000 ppm. There were six bacterial potential isolates  found namely Pseudomonas spp., (3), Achromobacter spp., Uncultured Microbacterium spp., and Exigoubacterium spp., which showing the growth up to the concentration of 2000 ppm. The potency of the six potential isolates was determined by using the conventional plate count technique.  The percentage removal of analyzed by the use of ICP-AES technique. The study shows isolation of the species which can remove heavy metal up to 60%. It was also found that the increase in the incubation time causes more reduction in the heavy metal concentration. The mutational analysis of the isolates for the strain improvement process shows that the Exigoubacterium species can grow at 3000 ppm heavy metal concentration and showed 60% reduction in heavy metal. This highly potential species can be used for the removal of different heavy metals which is also a viable, eco friendly and cost effective technology for cleanup of the environment. 


2019 ◽  
Vol 75 ◽  
pp. 1-12
Author(s):  
Aroloye O. Numbere

This study is based on bioaccumulation of total hydrocarbon (THC) and heavy metals in body parts of the West African red mangrove crab (G. pelii), which inhabit polluted mangrove forests. Thirty crabs were captured in October, 2018 and sorted into male and female. Their lengths and widths were measured, and body parts dismembered and oven-dried at 70 ͦ C for 48 hours. Physicochemical analysis for Cadmium (Cd), Zinc (Zn), Lead (Pb) and THC was measured by spectrophotometric method using HACH DR 890 colorimeter (wavelength 420 nm) and microwave accelerated reaction system (MARS Xpress, North Carolina) respectively. There was no significant difference (P > 0.05) in THC and heavy metals in the body parts of crabs.  However, Zinc was highest in claw (993.4±91.3 mg/l) and body tissues (32.5±1.9 mg/l), Pb was highest in carapace (34.6±2.8 mg/l) and gill (151.9±21.6 mg/l) while THC was highest in intestine (39.5±2.9 mg/l) and gut (52.4±13.4 mg/l). The order of concentration is Zn>Pb>THC>Cd. Male crabs had slightly higher THC and heavy metal concentration than female crabs probably because of their large size. There is negative correlation between carapace area and THC concentration (R = -0.246), meaning THC decreases with increasing carapace size. Internal parts of crab had higher THC and heavy metal concentration than external parts. These results show that there is high bioaccumulation of THC and heavy metals in crab, which is above WHO/FAO standard. This implies that the crabs are unfit for human consumption. The smaller the crab the better it is for consumption in terms of bioaccumulation of pollutants.


Author(s):  
Ngo The Cuong ◽  
Tran Hoan Quoc ◽  
Svetlana Vasilievna Zolotokopova

The article focuses on the study of change of containing heavy metals (zinc, copper, iron, cadmium, lead, arsenic) in the abiotic and biotic components of the Serepok river (Vietman) influenced by wastewater discharge from industrial areas. Heavy metal content was determined in the river water and bottom sediments in the four zones: above and within the boundaries of industrial regions Xoa Phu and Tam Thang and in two water reservoirs situated below the boundaries of those industrial areas. Tilapia Galilean ( Sarotherodon galilaeus ), Hemibagrus ( Hemibagrus ), and sazan ( Cyprinus carpio ) caught in these areas were the hydrobionts under study in which liver, gills, skeleton and muscles accumulation of heavy metals was detected. In the organs of fish caught in the river within industrial region, heavy metals concentration was 3-7 times higher. The greatest concentration of heavy metals was found in the liver and gills of fish caught in the boundaries of industrial regions, the least concentration was in the muscles. In most cases, significant correlation between heavy metal concentration in organs of fishes and in river water, bottom sediments has been revealed.


Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


2018 ◽  
Vol 69 (7) ◽  
pp. 1695-1698
Author(s):  
Marin Rusanescu ◽  
Carmen Otilia Rusanescu ◽  
Gheorghe Voicu ◽  
Mihaela Begea

A calcium bentonite from Orasu Nou deposit (Satu Mare Romania) was used as raw material. We have conducted laboratory experiments to determine the influence of bentonite on the degree of heavy metal retention. It has been observed that the rate of retention increases as the heavy metal concentration decreases. Experimental studies have been carried out on metal retention ( Zn) in bentonite. In this paper, we realized laboratory experiments for determining the influence of metal (Zn) on the growth and development of two types of plants (Pelargonium domesticum and Kalanchoe) and the effect of bentonite on the absorption of pollutants. These flowers were planted in unpolluted soil, in heavy metal polluted soil and in heavy metal polluted soil to which bentonite was added to observe the positive effect of bentonite. It has been noticed that the flowers planted in unpolluted soil and polluted with heavy metals to which bentonite has been added, the flowers have flourished, the leaves are still green and the plants whose soils have been polluted with heavy metals began to dry after 6 days, three weeks have yellowish leaves and flowers have dried. Experiments have demonstrated the essential role of bentonite for the removal of heavy metals polluted soil.


2016 ◽  
Vol 5 (10) ◽  
pp. 4933
Author(s):  
Sabia Sultana ◽  
A. K. M. Nur Alam Siddiki ◽  
Md. Rokonujjaman ◽  
M. Niamul Naser ◽  
Abdus Salam ◽  
...  

The heavy metal concentration (e.g., Mn, Zn, Pb and Ni) were determined in soft tissues and shells of freshwater mussels (Lamellidens marginalis) at the various sites of Dhanmondi lake, Dhaka, Bangladesh between the period April, 2010 and March 2011. The heavy metal concentrations in shells and soft tissues of freshwater mussels were tended to vary significantly among sampling points and seasons in Dhanmondi Lake. Distribution of heavy metals in shell and soft tissue of Lamellidens marginalis followed the order Mn>Zn>Pb>Ni, respectively. According to the t-test, level of manganese, zinc and lead under investigation between shell and tissue showed statistically significant differences [Mn: t=-11.387; df=16; P=0.000; Zn: t=-2.590; df=16; P=0.020 and Pb: t=-2.8679; df=16; P=0.011].


2021 ◽  
Vol 11 (15) ◽  
pp. 7099
Author(s):  
Inkyeong Moon ◽  
Honghyun Kim ◽  
Sangjo Jeong ◽  
Hyungjin Choi ◽  
Jungtae Park ◽  
...  

In this study, the geochemical properties of heavy metal-contaminated soils from a Korean military shooting range were analyzed. The chemical behavior of heavy metals was determined by analyzing the soil pH, heavy metal concentration, mineral composition, and Pb isotopes. In total, 24 soil samples were collected from a Korean military shooting range. The soil samples consist of quartz, albite, microcline, muscovite/illite, kaolinite, chlorite, and calcite. Lead minerals, such as hydrocerussite and anglesite, which are indicative of a transformation into secondary mineral phases, were not observed. All soils were strongly contaminated with Pb with minor concentrations of Cu, Ni, Cd, and Zn. Arsenic was rarely detected. The obtained results are indicated that the soils from the shooting range are contaminated with heavy metals and have evidences of different degree of anthropogenic Pb sources. This study is crucial for the evaluation of heavy metal-contaminated soils in shooting ranges and their environmental effect as well as for the establishment of management strategies for the mitigation of environmental risks.


1994 ◽  
Vol 30 (10) ◽  
pp. 173-177 ◽  
Author(s):  
Lee Chan-Won ◽  
Kwon Young-Tack

Over the past two decades, the coastal waters of Jinhae Bay have been extensively used by coastal communities and industries for the disposal of domestic and various industrial wastes, therefore increasing the level of pollutants in coastal waters with a subsequent increase in sediments, especially of heavy metals. Specific objectives of this research are to investigate the distribution of heavy metal concentration in biota, to compare the concentrations with those in sediment and water and to relate the bioconcentration to the different heavy metals in biota obtained from several sites. Sixty one percent of heavy metals was found in particulate form during the high runoff season and 32% during the dry season. The behavior of the particulate metals after flowing in to the enclosed coastal sea is an important factor in heavy metal contamination. Copper, lead and chromium contamination of sediment was revealed at several sites. The bioconcentration factors (BCFs) of zinc, cadmium, copper, nickel, chromium and lead by the mussel (Mytilus edulis) were determined as 2,900, 2,814, 807, 423, 228 and 127 in the decreasing order, respectively. The areas located nearest to highly populated city and industries exhibited mussels with the largest accumulation of copper, lead and chromium.


2009 ◽  
Vol 3 (2) ◽  
pp. 48-64
Author(s):  
Kadhim M. Ibrahim ◽  
Shaimaa A. Yousir

Several experiments were carried out to study heavy metal tolerance in tissue cultures or whole plants of S. grandiflora., Callus was induced and maintained on modified Murashige and Skoog, 1962 medium (MS) supplemented with (0.5)mg/l benzyl adenine and (2)mg/l 2,4-phenoxy acetic acid . Heavy metals (Cd, Co, Cu, Cr or Zn) were added to the culture medium at different concentrations as contamination agents. In order to asses the effect of these heavy metals on seed germination; seeds were sown in soil contaminated with different concentrations of heavy metals for 3 weeks. Atomic Absorption Spectrophotometer was used for analysis of samples taken from whole plants and callus cultures. Results showed that callus fresh weight decreased with increasing heavy metal concentration in cultural medium. Germination percentages and plant heights increased over time. However, a reduction occurred in these parameters with increasing heavy metal levels. Percentages of metals accumulated in calli were (0.001, 0.011, 0.012 and 0.013%) at (0.0, 0.05, 0.075 and 0.1)mg/l Cd respectively; (0.001, 0.008, 0.016 and 0.006%) at (0.0, 0.1, 0.25 and 0.5)mg/l Co respectively; (0.001, 0.020, 0.034 and 0.015%) at (0.0, 0.075, 0.2 and 0.5)mg/l Cu respectively; (0.001, 0.013, 0.012 and 0.010%) at (0.0, 0.25, 0.4 and 0.5)mg/l Cr respectively and (0.027, 0.051, 0.059 and 0.056%) at (0.0 , 0.75, 1.0 and 1.5)mg/l Zn respectively. Percentages of metals accumulated in whole plants were (0.08, 0.55, 1.11, 0.83 and 0.44%) at (0.0, 1.0, 2.0, 3.0 and 4.0)mg/Kg soil Cd respectively; (0.11, 0.22, 0.55, 0.47 and 0.44%) at (0.0, 15.0, 30.0 45.0 and 60.0)mg/Kg soil Co respectively; (0.01, 0.10, 0.57, 0.58 and 0.72%) at (0.0, 25.0, 50.0, 75.0 and 100.0)mg/Kg soil Cu respectively. (0.08, 0.80, 1.28, 1.31 and 0.88%) at (0.0, 25.0, 50.0, 75.0 and 100.0)mg/Kg soil Cr respectively and (0.06, 1.11, 1.20, 1.83 and 2.22%) at (0.0, 100.0, 200.0, 300.0 and 400.0)mg/Kg soil Zn respectively.


2020 ◽  
Vol 21 (2) ◽  
pp. 98-109
Author(s):  
Witriani Marvinatur Ihsan ◽  
Ratnawulan Ratnawulan

In the South Coastal Forest area, West Sumatra, a luminous mushroom with the species Neonothopanus Sp. This research was conducted with the aim of seeing the effect of heavy metals on the bioluminescence reaction of luminous mushrooms. Starting from the effect of heavy metal concentrations on the intensity and inhibition coefficient of luminous mushroom biolumination. From the measurement results, the maximum intensity value of luminous mushrooms is 499.6 au occurring at a wavelength of 505 nm. At a wavelength of 505 nm, visible light is produced in green. The results obtained are in accordance with observations, because the light emitted by the glowing mushroom is green. If the concentration of heavy metals is greater, the intensity of the bioluminescent fungus (Neonothopanus sp) will decrease. The type of heavy metal affects the intensity of the fungus biolumination. The greatest decrease in intensity occurred in copper (Cu) and iron (Fe), zinc (Zn) and lead (Pb). If the heavy metal concentration is greater, the inhibition coefficient will be smaller. The greatest inhibition coefficient due to the presence of heavy metals occurs in copper (Cu) then iron (Fe), zinc (Zn) and the smallest is lead (Pb).


Sign in / Sign up

Export Citation Format

Share Document