scholarly journals Effect of pattern of water supply on Vicia faba L. 2. Pod retention and filling, and dry matter partitioning, production and water use.

1990 ◽  
Vol 38 (2) ◽  
pp. 131-143 ◽  
Author(s):  
C. Grashoff

Pod retention and pod filling of V. faba was studied under different patterns of water supply. Mild water shortage during flowering, followed by plenty of water after flowering (d-i), resulted in high seed yields at lower stem nodes (defined as the first podding node to node number 11) in cv. Alfred. The inverse treatment (i-d: plenty of water during flowering, followed by increasing water shortage after flowering), but also i-i (plenty of water during and after flowering), showed 20-60% lower seed yields at those nodes. This effect was mainly due to a lower number of pods per node. In i-i, but not in i-d, the low pod retention at lower nodes was compensated for at higher nodes (defined as from node 12 to the last podding node). These results helped to explain the mechanism of the interaction between water supply pattern and the development of reproductive sinks. The quantitative consequences of these effects on the relation between total water use and seed yield are discussed. Without taking into account different water supply patterns, a linear relation between total water use (represented by total DM production) and seed yield already explained 75-85% of the variation in seed yield. If different water supply patterns were included in the regression analysis, >90% of the variation in seed yield could be explained. The i-i patterns, compared with d-i, resulted in suboptimum DM partitioning to reproductive organs, but showed a smaller seed yield variability. This indicated that defining and maintaining the optimum level of (mild) water shortage under varying climatological conditions needed further attention. (Abstract retrieved from CAB Abstracts by CABI’s permission)

Author(s):  
S.D. Isaeva ◽  
A.L. Buber

В статье проведен анализ состояния оросительных, в том числе рисовых, систем Краснодарского края за 20 лет. Рассмотрены основные способы полива, динамика орошаемой площади, суммарной водоподачи, оросительные нормы, объем коллекторно-дренажного стока и др. Выявлено сокращение поливаемых земель в Краснодарском крае, снижение суммарного водозабора и оросительных норм. Выполнен аналитический прогноз рассмотренных показателей на перспективу до 2030 г. и предложены меры по развитию и повышению эффективности орошения в Краснодарском крае, прежде всего за счет строгого планирования водопользования на основе цифровых технологий и математического моделирования.Сondition of irrigation systems analysis was carried out in the Krasnodar Territory. Irrigation methods, dynamics of irrigated area, total water supply, irrigation norms are considered. Reduction of irrigated land, total water withdrawal and irrigation norms has been established in the Krasnodar Territory. An analytical forecast of the considered indicators for the future until 2030 has been completed. Measures to develop and improve irrigation efficiency are proposed. Above all, this is rigorous water use planning based on digital technology and mathematical modeling.


2021 ◽  
Vol 6 (1) ◽  
pp. 99-104
Author(s):  
Viktoria Miroshnychenko

The article examines the level of water supply of the population of Ukraine in terms of administrative regions, considers the existing problems, and identifies ways to solve them. Regional differences in the annual water supply of the population of Ukraine per capita in terms of local and transit runoff, forecast resources and operational groundwater reserves, the size of their intake, including daily, and indicators of total water supply in the average water and low water (95 %) years. A comparison with the water supply indicators of other European countries is made. According to the indicated sources of water supply, groups of regions in which the state of water supply is critical have been identified. It is recognized as necessary when developing programs to improve water use, first of all to pay attention to areas that have not only lower indicators of total water supply, but also lower levels of operational reserves and projected groundwater resources, which should be used to meet drinking and sanitation. hygienic needs. The structure of fresh water use and pollution of water discharged together with wastewater are characterized. Particular attention is paid to the disclosure of the level of development, the dynamics of groundwater production, the structure of their use, the nature and causes of pollution. The ecological consequences and main problems caused by the natural shortage of water resources and significant regional differences in their provision, pollution of surface and groundwater and violations of the norms of their use are outlined. It is proposed, taking into account the unfavorable state of water supply in Ukraine as a whole and critical in some regions, to pay attention to the need for gradual introduction of economic methods of influence, through differentiation of prices for water supply of different quality, to water consumers and other economic entities. exploitation of water bodies, collection, preparation, transportation of water resources, which would stimulate the preservation and restoration of this valuable and unalternative natural product. JEL classіfіcatіon: Q25


2019 ◽  
Vol 68 (8) ◽  
pp. 803-815 ◽  
Author(s):  
Zhihao Gong ◽  
Xiaohong Jiang ◽  
Jilin Cheng ◽  
Yi Gong ◽  
Xing Chen ◽  
...  

Abstract Double-reservoir-and-double-pumping-station systems are commonly used for irrigation water supply in hilly regions of southern China. An optimization model for this water supply system is proposed to minimize water shortage. The model features few coupling constraints, including available water in the system and pumping volume limited by regional water rights. Dynamic programming was adopted to solve the subsystem and aggregation models. The results with the model and that with the standard operation policy were compared; the total water shortage was reduced by 87.7%, total water replenishment from outside was reduced by 2.2%, and total water spill was reduced by 60.6% for a system in Nanjing, China. The method may provide a reference for optimal operation of water supply systems comprising reservoirs and pumping stations.


1991 ◽  
Vol 117 (2) ◽  
pp. 197-205 ◽  
Author(s):  
M. S. S. Rao ◽  
N. J. Mendham

SUMMARYChinoli (Brassica campestris subsp. oleifera × subsp. chinensis), Marnoo and Apetalous (B. napus), with contrasting morphological characters, were compared over four seasons in Tasmania in 1985/86 and 1986/87. The total water use estimated from a depth of 70 cm increased in proportion to irrigations. Before irrigation all the crops had a similar pattern of moisture extraction but differences between the lines, and due to irrigations, emerged after the irrigation treatments. The genotypic differences were clearer in the winter sowing of 1986/87, when the growing season was longer. Apetalous, when unirrigated, extracted a greater amount of water from the lower, wetter regions of the soil profile, particularly in the longer winter sowing when its water use was the same as in the treatment receiving one irrigation. With consistently higher stomatal conductance, Apetalous used more water than chinoli or Marnoo. It also maintained a higher turgor at lower osmotic potentials, suggesting a greater degree of drought tolerance than found in the short duration chinoli which, although it had a lower water use, also gave lower seed yields.


1990 ◽  
Vol 38 (1) ◽  
pp. 21-44 ◽  
Author(s):  
C. Grashoff

V. faba cultivars including cv. Minica, Kristall, Alfred and Optica were grown with (a) full irrigation, or restricted irrigation (b) after the start of flowering, (c) after the end of flowering, (d) before flowering or (e) during flowering. Irrigation from the start of flowering stimulated vegetative growth but reduced initial reproductive growth and final seed yield compared with restricted water during flowering only. In 1982-84 using cv. Minica, treatment (e) gave high av. seed yields (7 t/ha), optimum harvest index (0.61 g/g) and a relatively small range of seed yields (2.2 t/ha), while (d) gave 7.1 t/ha, lower harvest index (0.57) and a small range of seed yields (1.4 t/ha). The other treatments and no irrigation gave much lower seed yields and a larger range of seed yields. Treatment (c) gave the lowest harvest index. Similar results were obtained with cv. Alfred. It was concluded that the amount and distribution of rainfall was a major reason for variability in seed yield of this crop. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1998 ◽  
Vol 49 (4) ◽  
pp. 613 ◽  
Author(s):  
K. H. M. Siddique ◽  
S. P. Loss ◽  
D. L. Pritchard ◽  
K. L. Regan ◽  
D. Tennant ◽  
...  

This study examined the adaptation of lentil (Lens culinaris Medik. cv. Digger) to dryland Mediterranean-type environments of southern Australia and determined the effect of time of sowing on growth, yield, and water use. Phenology, canopy development, radiation absorption, dry matter production and partitioning, seed yield, and water use were measured from a range of sowing times at a number of field locations in south-western Australia in 1994, 1995, and 1996. Contrary to previous results with poorly adapted cultivars, our study showed that lentil is well adapted to low to medium rainfall regions (300-500 mm/year) of south-western Australia and that seed yields greater than 1·0 t/ha and up to 2·5 t/ha can be achieved when sown early. Even in the dry season of 1994 when May-October rainfall was <200 mm, yields of approximately 1·0 t/ha were produced from early sowings. Seed yields were reduced with delayed sowing at rates of 4-29 kg/ha · day. Sowing in late April or early May allowed a longer period for vegetative and reproductive growth, rapid canopy development, greater absorption of photosynthetically active radiation, more water use, and, hence, greater dry matter production, seed yield, and water use efficiency than when sowing was delayed. Early-sown lentils began flowering and filling seeds earlier in the growing season, at a time when vapour pressure deficits and air temperatures were lower, and used more water in the post-flowering period when compared to those treatments where sowing was delayed. The values of water use efficiency for dry matter and grain production, and transpiration efficiency, for early-sown lentil (up to 30 kg/ha · mm, 11 kg/ha · mm, and 20 kg/ha · mm, respectively) were comparable to those reported for cereal and other grain legume crops in similar environments. The development of earlier flowering cultivars than Digger with greater dry matter production together with improved agronomic packages will increase and stabilise lentil yields in low rainfall environments of southern Australia.


2018 ◽  
Vol 246 ◽  
pp. 01006
Author(s):  
Jigang Ma ◽  
Haofang Wang ◽  
Libin Zhao ◽  
Song Wei

Water resources optimal regulation is an important means to mitigate the shortage of water resources and promote social and economic sustainable development in regions or watershed. With the rapid development of urban population and industrial and agricultural production in recent years, the shortage of water is becoming more and more serious in Jiaodong area. The four regions with serious water shortage including Weifang, Qingdao, Yantai and Weihai in Jiaodong area are the typical research areas. In combination with the water transfer project of Yellow river to Qingdao and the south-to-north water transfer project, the water diversion is carried out to alleviate the contradiction between water supply and demand of Jiaodong area. The year of 2014 deemed as the base year and the years of 2020 and 2025 are the planning years. Based on the supply and demand analysis of water resources, an optimal regulation model is built with the minimum total water shortage considering the constraints of water supply capacity of project, water distribution capacity and minimum water supply of bleeds and so on. The optimal regulation schemes are obtained by solution model using MATLAB programming. The results show that water shortage rate of the four cities decreases significantly in annual regulation. For different planning years, guarantee rate of 50%, 75% and 95%,the total water shortage rate will be reduced by 15.35%、15.75% and 16.85% respectively in 2020, and in 2025the total water shortage rate will be reduced by 13.27%、13.26% and 14.19% respectively. Therefore the water resources optimal regulation of inter-basin water transfer project can effectively mitigate water scarcity and the contradiction between water supply and demand in Jiaodong area.


1976 ◽  
Vol 27 (1) ◽  
pp. 1 ◽  
Author(s):  
AM Alston

Wheat was grown in reconstructed profiles of a sandy red-brown earth in pots 120 cm deep. Ammonium sulphate (40 mg nitrogen per pot) and/or monocalcium phosphate (75 mg phosphorus per pot) were placed either in the topsoil at 5 cm depth or in the subsoil at 25 cm. When the wheat reached ear emergence, water treatments were introduced to provide (a) dry topsoil and water shortage; (b) dry topsoil but ample water supply in the subsoil; or (c) an ample water supply with both topsoil and subsoil wet. The yield and concentrations of nitrogen and phosphorus in the wheat and the distribution of roots in the soil were measured at maturity. Water use by the plants was calculated. Drying of the topsoil decreased grain yield and uptake of nitrogen and phosphorus by the wheat, but the effects were small compared with those of water shortage per se. Placement of nitrogen and phosphorus at 25 cm produced higher grain yields than placement at 5 cm. There was no interaction between placement depth and the water treatments: this indicated that reduced availability of nutrients because of dry topsoil after ear emergence was not a major factor limiting yield. The fertilizer treatments affected the distribution of roots more than total root length. Root growth increased at the site of placement where nitrogen and phosphorus, and to a lesser extent nitrogen alone, were applied in the subsoil; there was little effect in other parts of the profile. Efficiency of water use was increased by the application of nitrogen.


Water Policy ◽  
2006 ◽  
Vol 8 (2) ◽  
pp. 97-110 ◽  
Author(s):  
Can Wang ◽  
Camilla Dunham Whitehead ◽  
Jining Chen ◽  
Xiaomin Liu ◽  
Junying Chu

Beijing is facing the considerable challenge of water shortage, as it is just able to meet current water demand in a year with average precipitation and a shortfall between water supply and demand is estimated to be around 1.8 billion[109] cubic meters (BCM) by 2010. Aiming to find the solution to such a severe challenge, this paper investigates Beijing's current and future water resources availability and water-use configurations, as well as past and current effort on both areas of water supply and demand. The analysis shows a continuously growing demand for water and an aggravating deficit of traditionally available water resources. The paper concludes that it is necessary to establish well-structured water-use data and employ more advanced forecasting methods if sound future decisions regarding water balance are expected to be made. In order to realize Beijing Municipality's full urban water conservation potential, it is suggested that a comprehensive and integrated long-term conservation program be implemented, which is technically feasible and economically justified, to conserve water consistently for many years.


2012 ◽  
Vol 260-261 ◽  
pp. 1120-1124
Author(s):  
Peng Kang Jin ◽  
Lei Zhang ◽  
Xian Bao Wang ◽  
Yong Ning Feng

Focusing on the water shortage and water stress during the construction period of Zhidan energy chemical industrial park, the optimal allocation of water resources in Zhidan was conducted, in order to guarantee the water demand of the energy chemical industrial park. The optimal allocation of water resources is based on the advanced investigating and analyzing on the potential of four kinds of available water in this industrial park (surface water, underground water, the rain-flood and the recycled water). As well as the principle of optimal allocation is to reduce the conventional water exploitation and to increase the unconventional water resource utilization. The study result shows, the recent total water resources in this park is 12.39×104 m3/d and the forward total water resources is 13.39×104 m3/d, which can meet the requirement of both recent and forward water consumption for this park(4.40×104 m3/d and 5.16×104 m3/d). The optimal allocation of water resources program is to achieve the goal of reaching a recent water supply of 4.5×104 m3/d, among which the underground water is 0.95×104 m3/d, the surface water is 3.0×104 m3/d, the recycled water is 0.5×104 m3/d, the rain-flood water is 0.05×104 m3/d. While for the forward water supply of these 4 available kinds of water are 1.45×104 m3/d, 3.0×104 m3/d, 1.0×104 m3/d, 0.05×104 m3/d respectively with a total supply of 5.5 ×104 m3/d.


Sign in / Sign up

Export Citation Format

Share Document