scholarly journals Antibacterial Activity of Protein Hydrolysates from Processed Mangoes against Human Pathogens

2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Thitiporn Ditsawanon ◽  
Yodying Yingchutrakul ◽  
Sittiruk Roytrakul
Author(s):  
ANNAMALAI MADURAM ◽  
RAJU KAMARAJ

Objectives: The objectives of the study were to study the antibacterial activity for the various extracts of Clausena dentata against human pathogens. Clausena (Rutaceae) is a genus of about 23 species of unarmed trees and shrubs. The stem bark of C. dentata is used in veterinary medicine for the treatment of wounds and sprains. Even though C. dentata has a lot of potential medical uses, the study of microbiological properties is very scarce. Methods: The plant C. dentata was collected from Kadagaman, near Tiruvannamalai, Tamil Nadu, India, and authenticated by Centre for Advanced Study in Botany, University of Madras, Chennai. The dry powder of stem bark was extracted with hexane, chloroform, and methanol. The extracts were subjected to qualitative phytochemical screening and antibacterial activity against human pathogenic bacteria such as Escherichia coli, Salmonella Typhi, Klebsiella pneumonia, Vibrio cholerae, and Staphylococcus aureus and compared with ciprofloxacin. Results: Qualitative chemical tests revealed the presence of various phytochemicals such as alkaloids, glycosides, carbohydrate, proteins and amino acids, phytosterols, and volatile oil. The antibacterial activity result reveals that all the extracts were are more active against V. cholerae. The activity against Pseudomonas aeruginosa was mild. Conclusion: The activity against V. cholerae was comparable with that of 5 μg/mL ciprofloxacin at the concentration of C. dentata 40 μg/mL. The orders of antibacterial activity against human pathogenic bacteria are hexane, methanol, and chloroform extract of C. dentata.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3628
Author(s):  
Anna Woziwodzka ◽  
Marta Krychowiak-Maśnicka ◽  
Grzegorz Gołuński ◽  
Anna Felberg ◽  
Agnieszka Borowik ◽  
...  

Antimicrobial resistance is a major healthcare threat globally. Xanthines, including caffeine and pentoxifylline, are attractive candidates for drug repurposing, given their well-established safety and pharmacological profiles. This study aimed to analyze potential interactions between xanthines and aromatic antibiotics (i.e., tetracycline and ciprofloxacin), and their impact on antibiotic antibacterial activity. UV-vis spectroscopy, statistical-thermodynamical modeling, and isothermal titration calorimetry were used to quantitatively evaluate xanthine-antibiotic interactions. The antibacterial profiles of xanthines, and xanthine-antibiotic mixtures, towards important human pathogens Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Enterobacter cloacae were examined. Caffeine and pentoxifylline directly interact with ciprofloxacin and tetracycline, with neighborhood association constant values of 15.8–45.6 M−1 and enthalpy change values up to −4 kJ·M−1. Caffeine, used in mixtures with tested antibiotics, enhanced their antibacterial activity in most pathogens tested. However, antagonistic effects of caffeine were also observed, but only with ciprofloxacin toward Gram-positive pathogens. Xanthines interact with aromatic antibiotics at the molecular and in vitro antibacterial activity level. Given considerable exposure to caffeine and pentoxifylline, these interactions might be relevant for the effectiveness of antibacterial pharmacotherapy, and may help to identify optimal treatment regimens in the era of multidrug resistance.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Asra Parveen ◽  
Manjunath S. Yalagatti ◽  
Venkataraman Abbaraju ◽  
Raghunandan Deshpande

Antimicrobial study of biofunctionalized silver nanoparticles has been done with the emphasis on its mechanism on both gram positive and negative bacteria. The biofunctionalized silver nanoparticles are employed considering their importance in green chemistry with respect to easy synthesis, usefulness, and economic synthetic procedure involved. The stability of these nanoparticles was determined by zeta potential analyzer. The probable mechanism of antibacterial activity was performed on Proteus mirabilis by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDAX) study which does not show the presence of silver. The free radicals generated by silver nanoparticles were responsible for lethal antibacterial activity by rupturing the cell surface which causes improper nutrient and signal supply. Free radical scavenging efficacy of silver nanoparticles was confirmed by 1,1-Diphenyl-2-picrylhydrazyl (DPPH) method. AgNP enhanced the membrane leakage of reducing sugars by destroying the proteins existing on the cell wall. These nanoparticles are found to be toxic against human pathogens and are highly effective on Staphylococcus aureus. The effect of silver nanoparticles is concentration dependent and independent of the type of strains used.


Author(s):  
Selvarani Murugan

Objective: Resistance to antibacterial agents by pathogenic bacteria has emerged in recent years and is a major challenge for the healthcare industry. Copper nanoparticles (CuNPs) are known to be one of the multifunctional inorganic nanoparticles with effective antibacterial activity. Hence the present investigation has been focused on synthesizing and evaluating the bactericidal effect of copper nanoparticles.Methods: CuNPs were synthesized by reducing the aqueous solution of copper sulfate with sodium borohydride. The synthesized particles were characterized by x-ray diffractogram (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques to analyze size, morphology and quantitative information respectively. The antibacterial activity of CuNPs was examined by agar well diffusion method. Synergistic effect of CuNPs with broad-spectrum antibiotics was determined by the agar disc diffusion method.Results: Color change of reaction mixture from blue to dark brown indicated the formation of CuNPs. SEM image clearly demonstrated that the synthesized particles were spherical in shape and its size was found to be 17.85 nm. EDS report confirmed the presence of elemental copper in the resultant nanoparticles and its accounts for major proportion (96%) of the mass of nanoparticles. Bacterial effect of CuNPs revealed that Pseudomonas aeruginosa showed the highest antibacterial sensitivity (16.00±1.63 mm), whereas least susceptibility (9.67±0.47 mm) was noticed against Staphylococcus aureus. An enhanced antibacterial activity of commercial antibiotics was also noticed when it combined with CuNPS. A minimum zone of inhibition was increased from 0.67±0.47 mm to 10.66±0.24 mm when the nanoparticles and antibiotics were given together.Conclusion: It was observed that copper nanoparticles exhibited profound activity against all the tested bacterial strains which shows that CuNPs may serve as a better option for use in medicine in the future.


Author(s):  
R. Cabrera-Contreras ◽  
R. Morelos-Ramírez ◽  
J. P. Quiróz-Ríos ◽  
D. Muñoz-Quiróz

Essential oils (EOs) are commonly used in food industry, due that they possess antioxidative and antimicrobial properties. There are few essential oils that have been used in medicine, due to its potent antibacterial activity against intrahospital pathogens. OEO has experimentally shown potent antibacterial effect on nosocomial Gram-positive bacteria, therefore it can be very useful in hospital environments, where there are many bacterial pathogens, which are the etiological agents of nosocomial infections and most of them are resistant to several antibiotics. Objective: The aim of this study was to determine antimicrobial effect of OEO on most frequent bacterial intrahospital pathogens: MRSA, MRSE comparatively to selected ATCC bacterial reference strains. Methods: This experimental study investigates the antibacterial action of oregano (Origanum vulgare) essential oil (OvEO) on two human pathogens: Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) Here, we used OEO against one of the most prominent antibiotic-resistant bacterial strains: methicillin-resistant SA (MRSAmecA+ = Meticillin Resistant SA and mecA- = Meticillin Resistance SA ), methicillin-resistant SE (MRSEmecA+ = Meticillin Resistance Staphylococcus epidermidis mecA+) and reference strains: S. aureus ATCC 700699, S. epidermidis ATCC 359845 and E. coli ATCC 25922. Bactericidal effects of the OEO on these bacteria were mainly evaluated using undiluted and four serial dilutions in coconut oil (CCO) l: 1:10, 1:100, 1:200, 1:400. Results: OEO, undiluted and 4 serial dilutions showed potent antibacterial activity against all strains tested. In conclusion, this OEO could be used as an alternative in medicine. The ability of OEO to inhibit and kill clinical Multi-Drug-Resistant (MDR): MRSA and MRSE strains, highlights it´s potential for use in the management of drug-resistant MDR infections in hospitals wards.


2020 ◽  
Author(s):  
Giriraj Tailor ◽  
Jyoti Chaudhary ◽  
Ajit Joshi ◽  
Deepshikha Verma ◽  
Osahon Michael

Abstract The bioactive chromium nanoparticles were synthesized by calcination followed by thermal decomposition method. The antibacterial activity of chromium nanoparticles diffused in Dimethyl sulphoxide (DMSO). The antibacterial activity of chromium nanoparticles carried out against significant human pathogens (gram negative bacteria) viz, K. pneumonia, E. coli and P. typhus using agar diffusion cup plate method at 100 µg/ml concentration. The highest zone of inhibition was observed (12.0 mm) against K. pneumonia and lowest zone of inhibition (7.0 mm) E. coli. Thus, the outcomes of these studies suggest that synthesized chromium nanoparticles are of clinical importance.


2013 ◽  
Vol 4 (7) ◽  
pp. 881-888 ◽  
Author(s):  
N. Shanmugam ◽  
P. Rajkamal ◽  
S. Cholan ◽  
N. Kannadasan ◽  
K. Sathishkumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document