scholarly journals Environmental factors driving phytoplankton biomass and diversity in a tropical reservoir

Author(s):  
Isabel Cristina Gil Guarín ◽  
Silvia Lucía Villabona-González ◽  
Edison Parra-García ◽  
Ricardo O. Echenique

We determined the spatial and temporal variation of phytoplankton biomass and diversity in 10 fortnightly sampling journeys verifying five sampling sites in El Peñol-Guatapé reservoir located in Antioquia, Colombia. In situ and ex situ physical and chemical variables were measured and phytoplankton samples were taken. Richness was dominated by Chlorophyta and biomass by Dinophyta. This variable was higher in the transition zone while in the riverine zone it showed average values, the lowest were registered in the lacustrine zone. Diversity was lower in the riverine zone, but it increased considerably in the transition zone and in the lacustrine zone where it showed similar values. At the vertical scale, biomass and diversity did not vary widely. Biomass showed a differential response to the effect of precipitation changes and water  levels in the reservoir zones. Due to the low variability in environmental conditions, diversity was homogeneous time-wise. These results suggest that factors related to the hydrodynamic such as precipitation and water level resulting from the dam operation and inflow have a slight influence on the temporal variations of phytoplankton biomass and structure. There was a direct relationship between these attributes and physical variables such as turbidity and nutrients concentration at spatial scale while at the vertical scale, mixing patterns and the influence of the wind explained the absence of the vertical gradient of biomass and phytoplankton structure.

2020 ◽  
Vol 12 (21) ◽  
pp. 3640
Author(s):  
Marco Bellacicco ◽  
Jaime Pitarch ◽  
Emanuele Organelli ◽  
Victor Martinez-Vicente ◽  
Gianluca Volpe ◽  
...  

Phytoplankton is at the base of the marine food web and plays a fundamental role in the global carbon cycle. Ongoing climate change significantly impacts phytoplankton distribution in the ocean. Monitoring phytoplankton is crucial for a full understanding of changes in the marine ecosystem. To observe phytoplankton from space, chlorophyll-a concentration (Chl) has been widely used as a proxy of algal biomass, although it can be impacted by physiology. Therefore, there has been an increasing focus towards estimating phytoplankton biomass in units of carbon (Cphyto). Here, we developed an algorithm to quantify Cphyto from space-based observations that accounts for the spatio-temporal variations of the backscattering coefficient associated with the fraction of detrital particles that do not covary with Chl. The main findings are: (i) a spatial and temporal variation of the detritus component must be accounted for in the Cphyto algorithm; (ii) the refined Cphyto algorithm performs better (relative bias of 23.7%) than any previously existing model; and (iii) our algorithm shows the lowest error in Cphyto across areas where picophytoplankton dominates (relative bias of 14%). In other areas, it is currently not possible to accurately assess the performance of the refined algorithm due to the paucity of in situ carbon data associated with nano- and micro-phytoplankton size classes.


2014 ◽  
Vol 26 (4) ◽  
pp. 429-441 ◽  
Author(s):  
Lúcia Helena Sampaio da Silva ◽  
Marlene Sofia Arcifa ◽  
Gian Salazar-Torres ◽  
Vera Lúcia de Moraes Huszar

AIM: This study aimed to experimentally test the influence of a planktivorous filter-feeding fish (Tilapia rendalli) on the phytoplankton dynamics of a small and shallow tropical reservoir (Lake Monte Alegre, Brazil). Adults of T. rendalli of this lake feed preferentially on phytoplankton, and we hypothesize that: I) adults of T. rendalli will decrease the phytoplankton biomass and composition through direct herbivory, and II) as it is a eutrophic system, fish would not have strong influence on phytoplankton through nutrient cycling. METHODS: To evaluate these different effects on algae, a field experiment was performed in the summer period for 15 days, in mesocosms isolated from the sediment, using a control group (no fish) and a treatment group (with one fish in each mesocosm). Physical and chemical variables and phyto- and zooplankton were evaluated at the start, middle, and end of the experiment. RESULTS: At the end of the experiment, it was observed a significant increase in ammonium concentrations and total phytoplankton biomass, Cyanobacteria and Zygnemaphyceae and all size classes except class II (20-30 µm) in the treatment group (with fish). The biomass increase of the potentially toxic cyanobacterium Cylindrospermospsis raciborskii was also observed in the fish treatment at the end of the experimental period. CONCLUSION: This study did not support both initial hypotheses. It supports the assertion that in tropical water bodies, with similar characteristics to the environment studied, planktivorous filter-feeding fish, such as T. rendalli, are not effective in reducing phytoplankton biomass through direct grazing, even when phytoplankton is one of their main food items. T. rendalli can contribute to the increase of phytoplankton biomass and can promote or increase the eutrophication of aquatic systems.


2021 ◽  
Vol 13 (9) ◽  
pp. 1846
Author(s):  
Vivek Kumar ◽  
Isabel M. Morris ◽  
Santiago A. Lopez ◽  
Branko Glisic

Estimating variations in material properties over space and time is essential for the purposes of structural health monitoring (SHM), mandated inspection, and insurance of civil infrastructure. Properties such as compressive strength evolve over time and are reflective of the overall condition of the aging infrastructure. Concrete structures pose an additional challenge due to the inherent spatial variability of material properties over large length scales. In recent years, nondestructive approaches such as rebound hammer and ultrasonic velocity have been used to determine the in situ material properties of concrete with a focus on the compressive strength. However, these methods require personnel expertise, careful data collection, and high investment. This paper presents a novel approach using ground penetrating radar (GPR) to estimate the variability of in situ material properties over time and space for assessment of concrete bridges. The results show that attributes (or features) of the GPR data such as raw average amplitudes can be used to identify differences in compressive strength across the deck of a concrete bridge. Attributes such as instantaneous amplitudes and intensity of reflected waves are useful in predicting the material properties such as compressive strength, porosity, and density. For compressive strength, one alternative approach of the Maturity Index (MI) was used to estimate the present values and compare with GPR estimated values. The results show that GPR attributes could be successfully used for identifying spatial and temporal variation of concrete properties. Finally, discussions are presented regarding their suitability and limitations for field applications.


Author(s):  
Pradyumna Challa ◽  
James Hinebaugh ◽  
A. Bazylak

In this paper, through-plane liquid water distribution is analyzed for two polymer electrolyte membrane fuel cell (PEMFC) gas diffusion layers (GDLs). The experiments were conducted in an ex situ flow field apparatus with 1 mm square channels at two distinct flow rates to mimic water production rates of 0.2 and 1.5 A/cm2 in a PEMFC. Synchrotron radiography, which involves high intensity monochromatic X-ray beams, was used to obtain images with a spatial and temporal resolution of 20–25 μm and 0.9 s, respectively. Freudenberg H2315 I6 exhibited significantly higher amounts of water than Toray TGP-H-090 at the instance of breakthrough, where breakthrough describes the event in which liquid water reaches the flow fields. While Freudenberg H2315 I6 exhibited a significant overall decrease in liquid water content throughout the GDL shortly after breakthrough, Toray TGP-H-090 appeared to retain breakthrough water-levels post-breakthrough. It was also observed that the amount of liquid water content in Toray TGP-H-090 (10%.wt PTFE) decreased significantly when the liquid water injection rate increased from 1 μL/min to 8 μL/min.


2011 ◽  
Vol 101 (1-2) ◽  
pp. 75-84 ◽  
Author(s):  
Juliana D Dias ◽  
Érica M Takahashi ◽  
Natália F Santana ◽  
Cláudia C Bonecker

We investigated the impact of fish cage culture on the zooplankton community structure in a tropical reservoir. We hypothesized that community abundance is greater near cages and increases over time due to the increase in food availability. Samplings were performed near, upstream and downstream from net cages, and before and after net cage installation. The abundance of zooplankton increased 15 days after the experiment was set up, followed by a reduction and finally increased. Rotifer abundance showed significant differences among sites (p<0.05) and sampling periods (p<0.001). Significant differences were also observed in total zooplankton and cladoceran abundance (p<0.001). The spatial and temporal variation of the physical and chemical variables were indirectly correlated with the structure and dynamic of the zooplankton community, as they indicated the primary production in the environment. Our hypothesis was rejected, since the zooplankton was abundant at the reference site. Only rotifers showed higher abundance near cages, due to the influence of food availability. Community dynamics during the experiment was also correlated to food availability. Our results suggest an impact of fish farming on the zooplankton community.


2021 ◽  
Vol 13 (19) ◽  
pp. 10740
Author(s):  
Linyan Pan ◽  
Junfeng Dai ◽  
Zhiqiang Wu ◽  
Liangliang Huang ◽  
Zupeng Wan ◽  
...  

When considering the factors affecting the spatial and temporal variation of nitrogen and phosphorus in karst watersheds, the unique karst hydrogeology as an internal influencing factor cannot be ignored, as well as natural factors such as meteorological hydrology and external factors such as human activities. A watershed-scale field investigation was completed to statistically analyze spatial and temporal dynamics of nitrogen and phosphorus through the regular monitoring and collection of surface water and shallow groundwater in the agricultural-dominated Mudong River watershed in the Huixian Karst Wetland over one year (May 2020 to April 2021). Our research found that non-point source pollution of nitrogen (84.5% of 239 samples TN > 1.0 mg/L) was more serious than phosphorus (7.5% of 239 samples TP > 0.2 mg/L) in the study area, and shallow groundwater nitrogen pollution (98.3% of 118 samples TN > 1.0 mg/L) was more serious than surface water (68.6% of 121 samples TN > 1.0 mg/L). In the three regions with different hydrodynamic features, the TN concentration was higher and dominated by NO3−-N in the river in the northern recharge area, while the concentrations of TN and TP were the highest in shallow groundwater wells in the central wetland core area and increased along the surface water flow direction in the western discharge area. This research will help improve the knowledge about the influence of karst hydrodynamic features on the spatial patterns of nitrogen and phosphorus in water, paying attention to the quality protection and security of water in karst areas with a fragile water ecological environment.


2018 ◽  
Vol 10 (9) ◽  
pp. 3285 ◽  
Author(s):  
Roxanne Lorilla ◽  
Konstantinos Poirazidis ◽  
Stamatis Kalogirou ◽  
Vassilis Detsis ◽  
Aristotelis Martinis

To manage multiple ecosystem services (ES) effectively, it is essential to understand how the dynamics of ES maintain healthy ecosystems to avoid potential negative impacts on human well-being in the context of sustainable development. In particular, the Ionian Islands in the central Mediterranean are characterized by high natural, ecological, and recreational value; however, the intensification of human activities over time has resulted in the loss of natural ecosystems, which might have negatively impacted ES. Here, we aimed to assess and understand the spatiotemporal dynamics of ES supply and how these components interact across the Ionian Islands to optimize future ES provision and mitigate current trade-offs. We quantified multiple ecosystem services and analyzed their interactions at a temporal scale across the four prefectures of the Ionian Islands. Seven ES were quantified covering all three ES sections (provisioning, regulating and maintenance, and cultural) of the Common International Classification of Ecosystem Services (CICES). ES interactions were investigated by analyzing ES relationships, identifying ES bundles (sets of ES that repeatedly occur together across space and time), and specifying ES occurrence within bundles. The three ES groups exhibited similar patterns on some islands, but differed on islands with areas of high recreation in parallel to low provisioning and regulating ES. Temporal variations showed both stability and changes to the supply of ES, as well as in the interactions among them. Different patterns among the islands were caused by the degree of mixing between natural vegetation and olive orchards. This study identified seven ES bundles that had distinct compositions and magnitudes, with both unique and common bundles being found among the islands. The olive grove bundle delivered the most ES, while the non-vegetated bundle delivered negligible amounts of ES. Spatial and temporal variation in ES appear to be determined by agriculture, land abandonment, and increasing tourism, as well as the occurrence of fires. Knowledge about the spatial dynamics and interactions among ES could provide information for stakeholders and decision-making processes to develop appropriate sustainable management of the ecosystems on the Ionian Islands to secure ecological, social, and economic resilience.


2017 ◽  
Vol 68 (6) ◽  
pp. 1061 ◽  
Author(s):  
Juliana dos Santos Severiano ◽  
Viviane Lúcia dos Santos Almeida-Melo ◽  
Enaide Marinho de Melo-Magalhães ◽  
Maria do Carmo Bittencourt-Oliveira ◽  
Ariadne do Nascimento Moura

Experiments were conducted to evaluate the N:P ratio, as well as the effects of the interaction between this ratio and zooplankton, on phytoplankton in a tropical reservoir. Three experiments were performed in the presence (+Z) or absence (–Z) of zooplankton and the addition of N and P in different ratios (N:P molar ratio of 5, 16 and 60).In Experiment I, the total phytoplankton biomass and biomass by taxonomic class and species of the N:P 16–Z treatment did not differ significantly from that of the control, whereas for N:P 16+Z, there was a reduction in total phytoplankton. In Experiment II, there was a significant increase in Bacillariophyceae and the biomass of two species in the N:P 60–Z treatment. For the N:P 60+Z treatment, a significant reduction was observed in the total phytoplankton biomass and the biomass of three phytoplankton classes and three species. In Experiment III, there was an increase in the biomass of Dinophyceae with the N:P 5–Z treatment. In the N:P 5+Z treatment, there was a significant reduction in total phytoplankton biomass and the biomass of the phytoplankton class and five species. The findings of the present study reveal that zooplankton species native to a tropical reservoir can change the structure of the phytoplankton community and the response of these organisms to variations in nutrients.


Sign in / Sign up

Export Citation Format

Share Document