scholarly journals Chemically Reactive MHD Eyring-Powell Nanofluid Flow past a Stretching Surface with Convergence Test

2021 ◽  
Vol 8 (4) ◽  
pp. 645-653
Author(s):  
Abdullah Al-Mamun ◽  
Sheikh Reza-E-Rabbi ◽  
Shikdar Mohammad Arifuzzaman ◽  
Umme Sara Alam ◽  
Md. Shohel Parvez ◽  
...  

The motive of this work is to examine the transfer of heat as well as mass phenomena of Eyring-Powell fluid flow on a stretching type of porous medium. The impact of heat absorption and thermal radiation are also considered here to describe the characteristics of the fluid flow. Firstly, a mathematical model of this fluid flow is established which includes time dependent continuity, energy, momentum and concentration formula. Then the fundamental equations are formed to dimensionless format. After that an explicit type finite difference technique is imposed to solve the model by taking the help of FORTRAN. The stability as well as convergence analysis (SCA) is used to develop and check the precession of the overall system. Moreover, the fields of temperature, velocity, concentration, skin friction, Nusselt number and Sherwood number got affected significantly with the influences of various pertinent parameters which are presented in different color diagrams. However, the updated visualization of the fluid flows is also presented by both isotherms and streamlines for the impact of radiation parameter. Moreover, for Eyring-Powell fluid, an interesting observation has been made that the thermophoretic parameter is influencing the temperature field significantly rather than the Brownian parameter. Finally, for the validation of the ongoing investigation, a suitable comparison is also depicted with some published papers and a proper agreement is noticed.

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 684
Author(s):  
Saeed Islam ◽  
Haroon Ur Rasheed ◽  
Kottakkaran Sooppy Nisar ◽  
Nawal A. Alshehri ◽  
Mohammed Zakarya

The current analysis deals with radiative aspects of magnetohydrodynamic boundary layer flow with heat mass transfer features on electrically conductive Williamson nanofluid by a stretching surface. The impact of variable thickness and thermal conductivity characteristics in view of melting heat flow are examined. The mathematical formulation of Williamson nanofluid flow is based on boundary layer theory pioneered by Prandtl. The boundary layer nanofluid flow idea yields a constitutive flow laws of partial differential equations (PDEs) are made dimensionless and then reduce to ordinary nonlinear differential equations (ODEs) versus transformation technique. A built-in numerical algorithm bvp4c in Mathematica software is employed for nonlinear systems computation. Considerable features of dimensionless parameters are reviewed via graphical description. A comparison with another homotopic approach (HAM) as a limiting case and an excellent agreement perceived.


Author(s):  
Amar B. Patil ◽  
Vishwambhar S. Patil ◽  
Pooja P. Humane ◽  
Nalini S. Patil ◽  
Govind R. Rajput

The present work deals with chemically reacting unsteady magnetohydrodynamic Maxwell nanofluid flow past an inclined permeable stretching surface embedded in a porous medium with thermal radiation. The formulated governing partial differential equations conveying the flow model of Maxwell with Buongiorno modeled nanofluid is transformed into the system of highly non-linear ordinary differential equations via suitable similarity transformations; those equations are transmuted into an initial value problem and then solved numerically by a shooting approach with Runge–-Kutta fourth-order schema. To obtain the physical insight of the flow situation, the influence of associated parameters on the velocity, temperature, and concentration profiles is sketched graphically with the aid of MATLAB software. Furthermore, engineering quantities of interest are interpreted graphically. The computed numerical results are compared to estimate the validity of the achieved results; it has been found out that the computed results are highly accurate. The impact of the Maxwell parameter and inclination angle of the sheet on the velocity field is observed in decaying. Both thermal and solutal energy transport are progressive in nature as the Maxwell parameter and thermophoresis parameter grows, and a reverse trend is observed for Prandtl number.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 286
Author(s):  
Yuli D. Chashechkin

Based on a brief historical excursion, a list of principles is formulated which substantiates the choice of axioms and methods for studying nature. The axiomatics of fluid flows are based on conservation laws in the frames of engineering mathematics and technical physics. In the theory of fluid flows within the continuous medium model, a key role for the total energy is distinguished. To describe a fluid flow, a system of fundamental equations is chosen, supplemented by the equations of the state for the Gibbs potential and the medium density. The system is supplemented by the physically based initial and boundary conditions and analyzed, taking into account the compatibility condition. The complete solutions constructed describe both the structure and dynamics of non-stationary flows. The classification of structural components, including waves, ligaments, and vortices, is given on the basis of the complete solutions of the linearized system. The results of compatible theoretical and experimental studies are compared for the cases of potential and actual homogeneous and stratified fluid flow past an arbitrarily oriented plate. The importance of studying the transfer and transformation processes of energy components is illustrated by the description of the fine structures of flows formed by a free-falling drop coalescing with a target fluid at rest.


2022 ◽  
Vol 6 (1) ◽  
pp. 38
Author(s):  
Ridhwan Reyaz ◽  
Ahmad Qushairi Mohamad ◽  
Yeou Jiann Lim ◽  
Muhammad Saqib ◽  
Sharidan Shafie

Fractional derivatives have been proven to showcase a spectrum of solutions that is useful in the fields of engineering, medical, and manufacturing sciences. Studies on the application of fractional derivatives on fluid flow are relatively new, especially in analytical studies. Thus, geometrical representations for fractional derivatives in the mechanics of fluid flows are yet to be discovered. Nonetheless, theoretical studies will be useful in facilitating future experimental studies. Therefore, the aim of this study is to showcase an analytical solution on the impact of the Caputo-Fabrizio fractional derivative for a magnethohydrodynamic (MHD) Casson fluid flow with thermal radiation and chemical reaction. Analytical solutions are obtained via Laplace transform through compound functions. The obtained solutions are first verified, then analysed. It is observed from the study that variations in the fractional derivative parameter, α, exhibits a transitional behaviour of fluid between unsteady state and steady state. Numerical analyses on skin friction, Nusselt number, and Sherwood number were also analysed. Behaviour of these three properties were in agreement of that from past literature.


1997 ◽  
Vol 77 (03) ◽  
pp. 504-509 ◽  
Author(s):  
Sarah L Booth ◽  
Jacqueline M Charnley ◽  
James A Sadowski ◽  
Edward Saltzman ◽  
Edwin G Bovill ◽  
...  

SummaryCase reports cited in Medline or Biological Abstracts (1966-1996) were reviewed to evaluate the impact of vitamin K1 dietary intake on the stability of anticoagulant control in patients using coumarin derivatives. Reported nutrient-drug interactions cannot always be explained by the vitamin K1 content of the food items. However, metabolic data indicate that a consistent dietary intake of vitamin K is important to attain a daily equilibrium in vitamin K status. We report a diet that provides a stable intake of vitamin K1, equivalent to the current U.S. Recommended Dietary Allowance, using food composition data derived from high-performance liquid chromatography. Inconsistencies in the published literature indicate that prospective clinical studies should be undertaken to clarify the putative dietary vitamin K1-coumarin interaction. The dietary guidelines reported here may be used in such studies.


Author(s):  
Olena Pikaliuk ◽  
◽  
Dmitry Kovalenko ◽  

One of the main criteria for economic development is the size of the public debt and its dynamics. The article considers the impact of public debt on the financial security of Ukraine. The views of scientists on the essence of public debt and financial security of the state are substantiated. An analysis of the dynamics and structure of public debt of Ukraine for 2014-2019. It is proved that one of the main criteria for economic development is the size of public debt and its dynamics. State budget deficit, attracting and using loans to cover it have led to the formation and significant growth of public debt in Ukraine. The volume of public debt indicates an increase in the debt security of the state, which is a component of financial security. Therefore, the issue of the impact of public debt on the financial security of Ukraine is becoming increasingly relevant. The constant growth and large amounts of debt make it necessary to study it, which will have a positive impact on economic processes that will ensure the stability of the financial system and enhance its security.


2018 ◽  
Vol 35 (4) ◽  
pp. 133-136
Author(s):  
R. N. Ibragimov

The article examines the impact of internal and external risks on the stability of the financial system of the Altai Territory. Classification of internal and external risks of decline, affecting the sustainable development of the financial system, is presented. A risk management strategy is proposed that will allow monitoring of risks, thereby these measures will help reduce the loss of financial stability and ensure the long-term development of the economy of the region.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
Muhammad Akhtar

Abstract A mathematical model is envisioned to discourse the impact of Thompson and Troian slip boundary in the carbon nanotubes suspended nanofluid flow near a stagnation point along an expanding/contracting surface. The water is considered as a base fluid and both types of carbon nanotubes i.e., single-wall (SWCNTs) and multi-wall (MWCNTs) are considered. The flow is taken in a Dacry-Forchheimer porous media amalgamated with quartic autocatalysis chemical reaction. Additional impacts added to the novelty of the mathematical model are the heat generation/absorption and buoyancy effect. The dimensionless variables led the envisaged mathematical model to a physical problem. The numerical solution is then found by engaging MATLAB built-in bvp4c function for non-dimensional velocity, temperature, and homogeneous-heterogeneous reactions. The validation of the proposed mathematical model is ascertained by comparing it with a published article in limiting case. An excellent consensus is accomplished in this regard. The behavior of numerous dimensionless flow variables including solid volume fraction, inertia coefficient, velocity ratio parameter, porosity parameter, slip velocity parameter, magnetic parameter, Schmidt number, and strength of homogeneous/heterogeneous reaction parameters are portrayed via graphical illustrations. Computational iterations for surface drag force are tabulated to analyze the impacts at the stretched surface. It is witnessed that the slip velocity parameter enhances the fluid stream velocity and diminishes the surface drag force. Furthermore, the concentration of the nanofluid flow is augmented for higher estimates of quartic autocatalysis chemical.


1997 ◽  
Vol 08 (04) ◽  
pp. 793-803 ◽  
Author(s):  
Yu Chen ◽  
Hirotada Ohashi

The lattice-Bhatnagar-Gross-Krook (BGK) method has been used to simulate fluid flow in the nearly incompressible limit. But for the completely incompressible flows, two special approaches should be applied to the general model, for the steady and unsteady cases, respectively. Introduced by Zou et al.,1 the method for steady incompressible flows will be described briefly in this paper. For the unsteady case, we will show, using a simple numerical example, the need to solve a Poisson equation for pressure.


Sign in / Sign up

Export Citation Format

Share Document