scholarly journals Frontier in hair loss and trichoscopy: A review

2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Ebtisam Elghblawi

<p>Skin surfaces have always been examined using dermoscopy, a familiar tool which is useful to magnify and examine skin especially in cases of pigmented skin lesions. However, to examine the hair and scalp, a practical tool called trichoscopy has surfaced recently and has proven to be handy and functional in diagnosing most hair-related diseases. It is also referred to as dermoscopy of the hair and the scalp. It can aid in assessing active diseases in the scalp and hair, such as yellow dots, dystrophic hairs, cadaverized black dots, white dots, and exclamation mark hairs – all of which denote specific criteria for hair diseases. Trichoscopy is a very newly developed non-invasive technique for hair image analysis. It permits non-invasive visualization of hair shafts at higher intensification (about ×70 and ×100) and enables measurement of hair shaft width without the need for removing hair for diagnostic reasons. Moreover, it helps <em>in vivo</em> visualization of the epidermal portion of hair follicles and perifollicular epidermis (orifices). Consequently, it is valuable as it permits the inspection of structures that are otherwise not seen by the naked eye. Trichoscopy is the new frontier for the diagnosis of hair and scalp disease. Nowadays, a trichoscope is considered a must for dermatologists and it is a hot topic in the treatment of hair diseases. There is pooled evidence that the utilization of trichoscopy in the clinical setting for evaluating hair disorders can improve its diagnostic capability beyond simple clinical scrutiny. Trichoscopy can identify both hair shaft and hair opening abnormalities without the need for hair sampling, as well as distinguish between different scalp and hair diseases. Furthermore, it can give easy and quick evaluation of the hair with a follow-up to determine progress and prognosis of the disease with photos. It can also aid in some genetic hair shaft dystrophies such as trichorrhexis nodosa, trichorrhexis invaginata, monilethrix, pili annulati, and pili torti. The limitation of trichoscopy is that it needs prior knowledge to apply it effectively in order to mandate an efficient use by correctly interpreting the findings and their significance. In cases where there are unsettled discrepancies, a histopathological investigation is needed. The interest in trichoscopy has vastly increased and has become an indispensable tool in evaluating patients with hair loss. The aim of this review is to supplement existing knowledge on trichoscopy with recent readings of different scalp and hair conditions that are commonly encountered in clinical settings.</p>

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 856 ◽  
Author(s):  
Ramya Lakshmi Rajendran ◽  
Prakash Gangadaran ◽  
Chang Hoon Seo ◽  
Mi Hee Kwack ◽  
Ji Min Oh ◽  
...  

Hair loss is a common medical problem affecting both males and females. Dermal papilla (DP) cells are the ultimate reservoir of cells with the potential of hair regeneration in hair loss patients. Here, we analyzed the role of macrophage-derived Wnts (3a and 7b) and macrophage extracellular vesicles (MAC-EVs) in promoting hair growth. We studied the proliferation, migration, and expression of growth factors of human-DP cells in the presence or absence of MAC-EVs. Additionally, we tested the effect of MAC-EV treatment on hair growth in a mouse model and human hair follicles. Data from western blot and flow cytometry showed that MAC-EVs were enriched with Wnt3a and Wnt7b, and more than 95% were associated with their membrane. The results suggest that Wnt proteins in MAC-EVs activate the Wnt/β-catenin signaling pathways, which leads to activation of transcription factors (Axin2 and Lef1). The MAC-EVs significantly enhanced the proliferation, migration, and levels of hair-inductive markers of DP cells. Additionally, MAC-EVs phosphorylated AKT and increased the levels of the survival protein Bcl-2. The DP cells treated with MAC-EVs showed increased expression of vascular endothelial growth factor (VEGF) and keratinocyte growth factor (KGF). Treatment of Balb/c mice with MAC-EVs promoted hair follicle (HF) growth in vivo and also increased hair shaft size in a short period in human HFs. Our findings suggest that MAC-EV treatment could be clinically used as a promising novel anagen inducer in the treatment of hair loss.


Author(s):  
Kovi Sneha ◽  
Jayakar Thomas

Introduction: Alopecia areata is a common chronic autoimmune inflammatory disease that involves hair follicles, characterized by hair loss on the scalp and/or body without scarring. Clinically, the disease presents as smooth, patchy hair loss with various patterns - diffuse or reticulate alopecia, ophiasis, ophiasis inversus, alopecia totalis (loss of hair all the scalp), or alopecia universalis (loss of hair all over the body). Clinical diagnosis of AA is made based on typical pattern of hair loss and the presence of characteristic exclamation mark hair in microscopy. Invasive (punch biopsy) techniques are often required in some cases where the clinical diagnosis is not straight forward Biopsy shows peribulbar lymphocytic infiltrates in a “swarm of bee pattern” which is characteristic of the acute stage of the disease. Dermoscopy is an imaging instrument that immensely magnifies surface features of skin lesions. It works on the principle of illumination and transillumination of skin with different light sources and studying it with a high magnification lens. Dry dermoscopy was done with heine delta 20 dermoscope which was followed by wet dermoscopy. Liquid paraffin was used as the immersion media. It is a noninvasive, repeatable, recordable bedside investigation. Objective: To study dermoscopic findings in alopecia areata. Materials and Methods: Study Design: Cross sectional study; Study Area: Skin Outpatient Department, Sree Balaji Medical College and Hospital; Study Population: All patients with hair loss, attending skin OPD, who are clinically diagnosed as Alopecia Areata; Study Method: Observational study; Sample Size: 30. Results: Clinically, the disease presents as smooth, patchy hair loss with various patterns. Dermoscopy is useful for diagnosis of AA clinically by the presence of cadaverized hairs (black dots), circle hair, coudablity hair, exclamation mark hairs (tapering hairs), broken hairs, yellow dots and clustered short vellus hairs in the hair loss areas. The results wear tabulated.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 260
Author(s):  
Klára Farkas ◽  
Szabolcs Bozsányi ◽  
Dóra Plázár ◽  
András Bánvölgyi ◽  
Luca Fésűs ◽  
...  

Pseudoxanthoma elasticum (PXE) is a rare multisystemic autosomal recessive connective tissue disease. In most cases, skin manifestations of PXE are the first to develop, followed later by severe ocular and cardiovascular complications. In our present study, in addition to dermoscopy, we introduced novel techniques, autofluorescence (AF) and diffuse reflectance (DR) imaging for the assessment of affected skin sites of five PXE patients. PXE-affected skin areas in most skin sites showed a previously observed pattern upon dermoscopic examination. With the novel imaging, PXE-affected skin lesions displayed high AF intensity. During our measurements, significantly higher mean, minimum and maximum AF intensity values were found in areas of PXE-affected skin when compared to uninvolved skin. Conversely, images acquired with the use of 660 and 940 nm illumination showed no mentionable difference. Our results demonstrate that AF imaging may be used in the in vivo diagnostics and quantification of the severity of the skin lesions of PXE patients. In addition, it is a safe, fast and cost-effective diagnostic method. AF imaging may be also used to objectively monitor the efficacy of the possible novel therapeutic approaches of PXE in the future.


2020 ◽  
Vol 49 (2) ◽  
pp. 20190071
Author(s):  
Dario Di Stasio ◽  
Dorina Lauritano ◽  
Francesca Loffredo ◽  
Enrica Gentile ◽  
Fedora Della Vella ◽  
...  

Objectives: Optical coherence tomography (OCT) is a non-invasive technique based on optical imaging with a micrometre resolution. The purpose of this study is to investigate the potential role of OCT in evaluating oral mucosa bullous diseases. Methods: two patients with bullous pemphigoid (BP) and one patient with pemphigus vulgaris (PV) were examined and images of their oral lesions were performed using OCT. Results: In OCT images, the BP blister has a clearly different morphology from the PV one compared to the blistering level. Conclusion: This exploratory study suggests that the OCT is able to distinguish epithelial and subepithelial layer in vivo images of healthy oral mucosa from those with bullous diseases, assisting the clinicians in differential diagnosis.The presented data are in accordance with the scientific literature, although a wider pool of cases is needed to increase statistical power. Histological examination and immunofluorescence methods remain the gold standard for the diagnosis of oral bullous diseases. In this context, the OCT can provide the clinician with a valuable aid both as an additional diagnostic tool and in the follow up of the disease.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Eun Young Lee ◽  
You Jin Nam ◽  
Sangjin Kang ◽  
Eun Ju Choi ◽  
Inbo Han ◽  
...  

Abstract Background Stress is an important cause of skin disease, including hair loss. The hormonal response to stress is due to the HPA axis, which comprises hormones such as corticotropin releasing factor (CRF), adrenocorticotropic hormone (ACTH), and cortisol. Many reports have shown that CRF, a crucial stress hormone, inhibits hair growth and induces hair loss. However, the underlying mechanisms are still unclear. The aim of this study was to examine the effect of CRF on human dermal papilla cells (DPCs) as well as hair follicles and to investigate whether the HPA axis was established in cultured human DPCs. Results CRF inhibited hair shaft elongation and induced early catagen transition in human hair follicles. Hair follicle cells, both human DPCs and human ORSCs, expressed CRF and its receptors and responded to CRF. CRF inhibited the proliferation of human DPCs through cell cycle arrest at G2/M phase and induced the accumulation of reactive oxygen species (ROS). Anagen-related cytokine levels were downregulated in CRF-treated human DPCs. Interestingly, increases in proopiomelanocortin (POMC), ACTH, and cortisol were induced by CRF in human DPCs, and antagonists for the CRF receptor blocked the effects of this hormone. Conclusion The results of this study showed that stress can cause hair loss by acting through stress hormones. Additionally, these results suggested that a fully functional HPA axis exists in human DPCs and that CRF directly affects human DPCs as well as human hair follicles under stress conditions.


2019 ◽  
Vol 570 ◽  
pp. 118641 ◽  
Author(s):  
Christian J.F. Bertens ◽  
Shuo Zhang ◽  
Roel J. Erckens ◽  
Frank J.H.M. van den Biggelaar ◽  
Tos T.J.M. Berendschot ◽  
...  

2016 ◽  
Vol 35 (11) ◽  
pp. 1161-1172
Author(s):  
Y Xu ◽  
J Liu ◽  
L Hua ◽  
Y Xiao ◽  
Y Tian ◽  
...  

An oligodeoxynucleotide with CCT repeats (CCT ODN) has been found in our previous study to selectively downregulate Toll-like receptor 7/9 (TLR7/9)-mediated immune responses both in vitro and in vivo. In this study, we unexpectedly found that CCT ODN induced severe patchy hair loss around the mouth in male F1 mice (female Balb/c × male C57BL/6) with lupus-like nephritis induced by injecting allogenic lymphocytes and also in male Balb/c mice, but not in female F1 mice and Balb/c mice and either gender of C57BL/6 mice. Increased infiltration of natural killer group 2, member D (NKG2D+) cells in hair loss skin and upregulated interferon-gamma (IFN-γ) messenger RNA expression in cultured splenocytes were observed in male Balb/c mice. The CCT ODN-conditioned supernatants of cultured mouse splenocytes caused catagen-like changes to hair follicles (HFs). We hypothesized that the CCT ODN could induce patchy hair loss in the male mice with certain genetic traits by mobilizing NKG2D+ cells to HFs and by inducing the production of IFN-γ from immune cells. Taken together these data indicated that a gender and genetic preference of immune-regulatory oligonucleotides is causing unexpected clinical situations such as hair loss.


2020 ◽  
Author(s):  
Tyler Nguyen ◽  
Jianhua Gao ◽  
Ping Wang ◽  
Abhignyan Nagesetti ◽  
Peter Andrews ◽  
...  

AbstractNon-invasive brain stimulation is valuable for studying neural circuits and treating various neurological disorders in humans. However, the current technologies usually have low spatial and temporal precision and poor brain penetration, which greatly limit their application. A new class of nanoparticles known as magneto-electric nanoparticles (MENs) can be navigated to a targeted brain region with a magnetic field and is highly efficient in converting an externally applied magnetic wave into local electric fields for neuronal activity modulation. Here we developed a new method to fabricate MENs of CoFe2O4-BaTiO3 core-shell structure that had excellent magneto-electrical coupling properties. Using calcium imaging of organotypic and acute cortical slices from GCaMP6s transgenic mice, we demonstrated their efficacy in reliably evoking neuronal responses with a short latency period. For in vivo non-invasive delivery of MENs to brain, fluorescently labeled MENs were intravenously injected and guided to pass through the blood brain barrier to a targeted brain region by applying a magnetic field gradient. A magnetic field (∼450 Oe at 10 Hz) applied to mouse brain was able to reliably evoke cortical activities, as revealed by in vivo two-photon and mesoscopic imaging of calcium signals at both cellular and global network levels. The effect was further confirmed by the increased number of c-Fos expressing cells after stimulation. Neither brain delivery of MENs nor the subsequent magnetic stimulation caused any significant increases in the numbers of GFAP and IBA1 positive astrocytes and microglia in the brain. This study demonstrates the feasibility of using MENs as a novel efficient and non-invasive technique of contactless deep brain stimulation that may have great potential for translation.


Author(s):  
Suryawanshi Nishant C ◽  
Vijayendra Swamy S. M. ◽  
Nagoba Shivappa N. ◽  
Wanje Vaijanti V.

The present study now a days many people face the major problem related to hair i.e. hair loss. There are many causes of hair loss physiological conditions, emotional or physical stress, nutritional deficiencies, hormonal disorders one of the due to hormone deficiency of estrogen. External administration of the estrogen could changes the hormonal cycle and increase cancer risk some natural alternative estrogen therapy can be found in the various plants containing natural products those having weak estrogen activity like Phyto-estrogen. Herbal drug has less side effects and more effective as comparative to synthetic drug. Phytoestrogen are competing with the estrogen by the binding to the estrogen receptor and produce estrogen effect, Phytoestrogen in the fenugreek seed. Family – Fabaceae Ethanolic extract of (Trigonella foenum-graecum) fenugreek seed prepared for the topical formulation of herbal hair gel formulation by using Carbopol 934 gelling agent, glycerin, pvp, methyl paraben, PEG, Triethanolamine Fenugreek was evaluated for its potency on hair growth activity by in vivo method. In vivo, study 2.5mg of fenugreek extract is used. That is applied on the shaved skin of mice to determine the length of hair and the different cyclic phase of hair follicles like anagen and s phases were will be grow after some time periods. From the study topical use of gel formulation were apply for 30 days .There are use of fenugreek extract containing gel formulation over the shaved skin of mice that shows the significant result by increase the hair growth. The prepared gel was characterized for their physicochemical constants, preliminary phyto-chemical analysis, quantitative analysis, Spread-ability, pH, viscosity, and stability study.


2020 ◽  
Author(s):  
Eun Young Lee ◽  
You Jin Nam ◽  
Sangjin Kang ◽  
Eun Ju Choi ◽  
Inbo Han ◽  
...  

Abstract Background: Stress is an important cause of skin disease, including hair loss. The hormonal response to stress is due to the HPA axis, which comprises hormones such as corticotropin releasing factor (CRF) , adrenocorticotropic hormone (ACTH) , and cortisol. Many reports have shown that CRF, a crucial stress hormone, inhibits hair growth and induces hair loss. However, the underlying mechanisms are still unclear. The aim of this study was to examine the effect of CRF on human dermal papilla cells (DPCs) as well as hair follicles and to investigate whether the HPA axis was established in cultured human DPCs.Results: CRF inhibited hair shaft elongation and induced early catagen transition in human hair follicles. Hair follicle cells, both human DPCs and human ORSCs, expressed CRF and its receptors and responded to CRF. CRF inhibited the proliferation of human DPCs through cell cycle arrest at G2/M phase and induced the accumulation of reactive oxygen species (ROS) . Anagen-related cytokine levels were downregulated in CRF-treated human DPCs. Interestingly, increases in proopiomelanocortin (POMC) , ACTH, and cortisol were induced by CRF in human DPCs, and antagonists for the CRF receptor blocked the effects of this hormone. Conclusion: The results of this study showed that stress can cause hair loss by acting through stress hormones. Additionally, these results suggested that a fully functional HPA axis exists in human DPCs and that CRF directly affects human DPCs as well as human hair follicles under stress conditions.


Sign in / Sign up

Export Citation Format

Share Document