scholarly journals Biological Potential and Chemical Properties of Pyridine and Piperidine Fused Pyridazine Compounds: Pyridopyridazine a Versatile Nucleus

2016 ◽  
Vol 1 (1) ◽  
pp. 29 ◽  
Author(s):  
Mohammad Asif

Pyridopyridazine compounds are important nitrogen atom containing heterocyclic compounds due to their pharmacological versatility. This heterocycle system characterized a structural feature for different types of bioactive compounds that exhibiting various types of biological activities which make it an attractive scaffold for the design and development of new drug molecules. This article provided information about the pharmacological properties of pyridopyridazines derivatives.

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2030 ◽  
Author(s):  
Ana I. Koleva ◽  
Nevena I. Petkova-Yankova ◽  
Rositca D. Nikolova

Coumarins are an important class of natural heterocyclic compounds that have attracted considerable synthetic and pharmacological interest due to their various biological activities. This review emphasizes on the synthetic methods for the preparation of dialkyl 2-oxo-2H-1-benzo- pyran-3-phosphonates and alkyl 1,2-benzoxaphosphorin-3-carboxylates. Their chemical properties as acceptors in conjugate addition reactions, [2+2] and [3+2] cycloaddition reactions are discussed.


2018 ◽  
Vol 15 (3) ◽  
pp. 321-340 ◽  
Author(s):  
Neha ◽  
Ashish Ranjan Dwivedi ◽  
Rakesh Kumar ◽  
Vinod Kumar

Background: In recent years, the development and diversification of heterocyclic compounds has become central to the discovery of bioactive compounds with novel or improved pharmacological properties. In particular, N-containing heterocycles are proved to be promising leads and drug candidates, and received huge attention of the medicinal chemists. Objective: Many drugs especially antibiotics are becoming obsolete due to the development of multidrug resistance. Moreover, toxicity and other side effects of some drugs necessitated the quest for safer and more potent drug candidates. The current review article described biological potential of various monocyclic azoles. Recent developments in the synthesis of azole derivatives have been also reviewed. Conclusion: The presence of N-heterocyclic rings can influence the pharmacokinetics, pharmacodynamics, pKa and bioavailability profile of the drug molecules. Compounds containing monocyclic azole rings showed various biological activities and number of molecules are in clinical practice. A number of important leads and potential drug candidates containing azole nucleus are in advance stages of drug developments. Thus, simple, atom economic and more efficient synthetic strategies are desired for the synthesis of new libraries of the compounds.


Author(s):  
Harish Rajak ◽  
Murli Dhar Kharya ◽  
Pradeep Mishra

There are vast numbers of pharmacologically active heterocyclic compounds in regular clinical use. The presence of heterocyclic structures in diverse types of compounds is strongly indicative of the profound effects such structure exerts on physiologic activity, and recognition of this is abundantly reflected in efforts to find useful synthetic drugs. The 1,3,4-oxadiazole nucleus has emerged as one of the potential pharmacophore responsible for diverse pharmacological properties. Medical Literature is flooded with reports of a variety of biological activities of 2,5-Disubstituted-1,3,4-oxadiazoles. The present work is an attempt to summarize and enlist the various reports published on biologically active 2,5-disubstituted-1,3,4-oxadiazoles.


2020 ◽  
Vol 24 (5) ◽  
pp. 473-486 ◽  
Author(s):  
Ligia S. da Silveira Pinto ◽  
Thatyana R. Alves Vasconcelos ◽  
Claudia Regina B. Gomes ◽  
Marcus Vinícius N. de Souza

Azetidin-2-ones (β-lactams) and its derivatives are an important group of heterocyclic compounds that exhibit a wide range of pharmacological properties such as antibacterial, anticancer, anti-diabetic, anti-inflammatory and anticonvulsant. Efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. The present review aimed to highlight some recent discoveries (2013-2019) on the development of novel azetidin-2-one-based compounds as potential anticancer agents.


2019 ◽  
Vol 41 (6) ◽  
pp. 1046-1046
Author(s):  
Omar A Shareef Omar A Shareef ◽  
Said A Said and Ali Y Abdulrazaq Said A Said and Ali Y Abdulrazaq

The wide biological activities of flavanones are mainly depends on their physical and chemical properties, thus a number of substituted 2-Hydroxy chalcones have been synthesized, and their isomerization to their corresponding flavanones was studied. In order to determine the rate constant, kinetic experiments were performed using HPLC technique in (9:1) (CH3CN:H2O) medium at different temperature (298-318) K. The obtained results were interpreted by four steps mechanism, which considered the existence of phenoxide ion as the key intermediate. This study performed with a pseudo first order ( reaction in which the rate for the studied compounds follow the sequence 5 andgt; 2 andgt; 1 andgt; 4 andgt; 3, the activation energy have the same sequence for these compounds .The effect of substituents on the rate showed that electronic and steric factors play reasonable role on the stability of the product .


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5666
Author(s):  
Valéria Verebová ◽  
Jiří Beneš ◽  
Jana Staničová

Photosensitive compounds found in herbs have been reported in recent years as having a variety of interesting medicinal and biological activities. In this review, we focus on photosensitizers such as hypericin and its model compounds emodin, quinizarin, and danthron, which have antiviral, antifungal, antineoplastic, and antitumor effects. They can be utilized as potential agents in photodynamic therapy, especially in photodynamic therapy (PDT) for cancer. We aimed to give a comprehensive summary of the physical and chemical properties of these interesting molecules, emphasizing their mechanism of action in relation to their different interactions with biomacromolecules, specifically with DNA.


Author(s):  
Kaplaushenko Tm ◽  
Panasenko Oi ◽  
Kucheryavy Yu

ABSTRACTObjective: Fundamental research in pharmacy and medicine have shown that drugs, which are based on nucleus of the 1,2,4-triazole, have a widerange of biological effects. Derivatives of this heterocyclic system have well-known Ukrainian clinicians and the world scientists due to its antifungal,antidepressant, anticancer, cardio- and hepatoprotective properties. The pharmacological activity of most organic compounds depends on severaldifferent factors, including bioavailability of the substance. Hence, it is very important to consider the results of the synthetic and biological researchesand established dependence of structure on the biological action when scientists model new molecules or improve pharmacological properties of anexisting structure. One of the important social and economic problems of the pharmaceutical industry is the implementation in practice of new drugsthat could compete with expensive imported drugs. In recent times, 1,2,4-triazole-3-thioderivatives take attention of compatriots and scientists offoreign countries who are working on finding bioactive compounds including heterocyclic systems. The structure, physical and chemical properties,pharmacological activities of 1,2,4-triazoles, and their 3-thioderivatives are understudied. Hence, the study of that will be actually and novelty formodern science. The main purpose of our research is synthesis of 3-alkylsulfonyl-5-(chinoline-2-yl, 2-hydroxychinoline-4-yl)-4-R-2,4-dihydro-3N1,2,4-triazoles,studyingof its physicaland chemical properties.Methods: The initial compounds have been synthesized previously using known in literature techniques. Oxidation of the sulfur atom of thesynthesized compounds to the hexavalent condition was carried out adding solution of hydrogen peroxide.Results: The structure of the obtained compounds was determined with the modern physical and chemical analysis methods: Element analysis,infrared-spectrophotometry, and their individuality with thin layer chromatography.Conclusions: Prospect of the further researches is determination of acute toxicity and next studying of pharmacological properties of the synthesizedcompounds.Keywords: 1,2,4-triazoles, Synthesis, Chemical properties, Chinoline.1 


1983 ◽  
Vol 38 (6) ◽  
pp. 738-746 ◽  
Author(s):  
Reinhold Tacke ◽  
Hartwig Lange ◽  
William S. Sheldrick ◽  
Günter Lambrecht ◽  
Ulrich Moser ◽  
...  

Abstract In the course of systematic investigations on sila-substituted parasympatholytics the diphenyl(2-aminoethoxymethyl)silanols 3b and 4b (and its carbon analogue 4a) were synthesized and characterized by their physical and chemical properties. In the solid state 4a and 4b form strong O-H---N hydrogen bonds, which are intramolecular (4a) and intermolecular (4b), respectively. 4a and 4b were found to be weak antimuscarinic agents (4b >4a) and strong papaverine-like spasmolytics (4a ≈4b).


2018 ◽  
Vol 115 (2) ◽  
pp. 209
Author(s):  
Debjani Nag ◽  
P. Kopparthi ◽  
P.S. Dash ◽  
V.K. Saxena ◽  
S. Chandra

Macerals in coal are of different types: reactive and inert. These macerals are differ in their physical and chemical properties. Column flotation method has been used to separate the reactive macerals in a non-coking coal. The enriched coal is then characterized in order to understand the changes in the coking potential by different techniques. It is then used in making of metallurgical coke by proper blending with other coals. Enriched coal enhance the properties of metallurgical coke. This shows a path of utilization of non-coking coal in metallurgical coke making.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yadian Xie ◽  
Duygu Kocaefe ◽  
Chunying Chen ◽  
Yasar Kocaefe

The nanomaterials have been widely used in various fields, such as photonics, catalysis, and adsorption, because of their unique physical and chemical properties. Therefore, their production methods are of utmost importance. Compared with traditional synthetic methods, the template method can effectively control the morphology, particle size, and structure during the preparation of nanomaterials, which is an effective method for their synthesis. The key for the template method is to choose different templates, which are divided into hard template and soft template according to their different structures. In this paper, the effects of different types of templates on the morphology of nanomaterials during their preparation are investigated from two aspects: hard template and soft template, combined with the mechanism of action.


Sign in / Sign up

Export Citation Format

Share Document