Improving the Environmental Safety of Transport Engines Using Modified Engine Oil

2020 ◽  
Vol 24 (1) ◽  
pp. 9-13
Author(s):  
S.A. Petukhov ◽  
L.S. Kurmanova ◽  
M.P. Erzamaev ◽  
D.S. Sazonov ◽  
D.S. Chinchenko

The problems of reducing emissions of harmful substances by transport engines are considered. It has been established that the use of modified engine oil is an effective way to increase the environmental safety of transport engines. The effectiveness of additives to improve the backsize of motor oil and reduce harmful emissions in the exhaust gas was evaluated. Methods for feeding additives are proposed. Technical solutions for the use of additives for transport engines have been developed. Experimental studies are presented to assess the effect of modified engine oil on the environmental safety of an engine.

2019 ◽  
pp. 20-24
Author(s):  
Максим Андрійович Пирисунько ◽  
Роман Миколайович Радченко ◽  
Андрій Адольфович Андреєв ◽  
Вікторія Сергіївна Корнієнко

The problem of air basin pollution of the World Ocean with harmful emissions from the exhaust gases of marine diesel engines is primarily associated with the creation of highly efficient technologies for the neutralization of nitrogen oxides NOx on exhaust gases from a diesel engine. Emissions of harmful substances from the combustion of marine fuels are limited by international atmospheric protection programs and the requirements of the International Maritime Organization (IMO). The requirements relate to almost all groups of harmful emissions in marine engines and the more stringent of them are primarily related to nitrogen oxides NOx and sulfur oxides SOx. To reduce harmful emissions from exhaust gases into the environment, scientists and world engine leaders use and suggest various methods for reducing the content of harmful substances in exhaust gases. The implementation of new standards in the areas of further improvement of the working process, the use of alternative fuels, fuel, and air additives, as well as selective catalytic reduction systems do not preclude further development of scientific research in the field of exhaust gas cleaning. One of the promising ways in environmentalizing marine internal combustion engines is the neutralization of harmful substances in exhaust gases through particular gas recirculation (EGR-technology). However, the use of such techniques conflicts with the engine's energy efficiency. In the work presented, the scheme-design solution of the exhaust gas recirculation system with using the heat of recirculation gases by an ejector refrigeration machine for cooling the air at the intake of ship's main engine is proposed. The effect of using the heat of recirculation gases for cooling the air at the intake of the engine is analyzed taking into account the changing climatic conditions for a particular vessel's route line. It is shown that the use of an ejector refrigeration machine reduces the air temperature at the entrance of the main engine by 5…15 ° С, which reduces the specific fuel consumption. This reduces emissions of harmful substances when the engine is running with recirculation of gases.


2020 ◽  
Vol 34 ◽  
pp. 29-40
Author(s):  
V. Nalyvaiko ◽  
V. Konovaliuk

The search for technical solutions for effective air exchange in the space of deep open-cast mines. Since intensive air exchange is necessary to remove and disperse harmful impurities from the open-cast mines, improvement can be achieved mainly by intensifying natural air exchange based on phase transformations of liquids in the lower atmosphere of the working zones of the open-cast mines by creating a positive or negative temperature gradient. New technical solutions are considered that provide support for the sanitary-hygienic parameters of the atmosphere of the deep open-cast mines at the normative level. The formation of an ascending gas stream by a cascade explosion of a fuel-air mixture has the greatest efficiency. The proposed method allows for the implementation of a pulsed ventilation mode with a power of the outgoing air flow of more than 1010 W with a blasting fuel mass of 30 tons. It has been established by analytical and experimental studies that it is advisable to use pulsed fine irrigation systems to intensify air exchange in a deep open-cast mines, using the double effect, ventilating gaseous working zones and cleaning them from harmful substances with the help of a fine aerosol freely floating in space. It is also advisable to use such facilities to reduce peak loads on emissions of harmful substances from the open-cast mines into the environment and to normalize the composition of the atmosphere of the deep open-cast mines. Significant peak emissions of harmful impurities in open-cast mines include mass explosions and situations involving the creation of internal inversion zones. In a computational experiment, there are two water guns: big gun (the water jet range is 200 m, water volume per one cycle is 1000 dm3) and small gun(the water jet range is 100 m, water volume per one cycle is 200 dm3). The results of the experiment indicate greater efficiency in the use of a large water gun for airing the lower horizons of the deep open-cast mines. The use of pulsed fine irrigation systems will allow for carrying out internal technological work at a depth of more than 500 meters using a motorized ore delivery system to transfer points of cyclic-flow technology.


2020 ◽  
Vol 19 (4) ◽  
pp. 305-310
Author(s):  
G. M. Kuharonak ◽  
D. V. Kapskiy ◽  
V. I. Berezun

The purpose of this work is to consider the requirements for emissions of harmful substances of diesel engines by selecting design and adjustment parameters that determine the organization of the workflow, and the exhaust gas cleaning system, taking into account the reduction of fuel consumption. Design elements and geometric characteristics of structures for a turbocharged diesel engine of Д-245 series produced by JSC HMC Minsk Motor Plant (4ЧН11/12.5) with a capacity of 90 kW equipped with an electronically controlled battery fuel injection have been developed: exhaust gas recirculation along the high pressure circuit, shape and dimensions of the combustion chamber, the number and angular arrangement of the nozzle openings in a nozzle atomizer, and inlet channels of the cylinder head. Methods for organizing a workflow are proposed that take into account the shape of the indicator diagrams and affect the emissions of nitrogen oxides and dispersed particles differently. Their implementation allows us to determine the boundary ranges of changes in the control parameters of the fuel supply and exhaust gas recirculation systems when determining the area of minimizing the specific effective fuel consumption and the range of studies for the environmental performance of a diesel engine. The paper presents results of the study on the ways to meet  the requirements for emissions of harmful substances, obtained by considering options for the organization of working processes, taking into account the reduction in specific effective fuel consumption, changes in the average temperature of the exhaust gases and diesel equipment. To evaluate these methods, the following indicators have been identified: changes in specific fuel consumption and average temperature of the toxicity cycle relative to the base cycle, the necessary degree of conversion of the purification system for dispersed particles and NOx. Recommendations are given on choosing a diesel engine to meet Stage 4 emission standards for nitrogen oxides and dispersed particles.


2020 ◽  
Vol 24 (5) ◽  
pp. 51-57
Author(s):  
D.Ya. Nosyrev ◽  
V.V. Asabin ◽  
A.A. Mishkin ◽  
L.S. Kurmanova ◽  
S.A. Petukhov ◽  
...  

The issue of improving the environmental safety of locomotive-type diesel engines by using hydrogen is considered. The analysis of pollutants that pose a special danger to the atmosphere. To ensure reliable operation of locomotive-type diesel engine with hydrogen supply, an on-board system has been developed. To solve environmental problems in rail transport, the article provides experimental data on the assessment of the effect of hydrogen additives on the levels of emissions of harmful substances on the example of a diesel shunting diesel locomotive ChME3.


Author(s):  
A. A. Kondratiuk ◽  

The paper presents the results of theoretical and experimental studies of the environmental characteristics of internal combustion engines of commercial and municipal vehicles operating on the Diesel cycle using a hydrogen additive. The analysis of literature sources has confirmed that there are different data regarding harmful emissions when using hydrogen additives for internal combustion engines running on the Diesel cycle. Therewith, data on harmful emissions of nitrogen oxides NOx differ significantly. The results of theoretical and experimental studies of the environmental characteristics of internal combustion engines of commercial and municipal vehicles operating on a Diesel cycle using a hydrogen additive, allow to assert the adequacy of the model, since the error between the theoretical and experimental data did not exceed 14,5 %. It has been found out that the concentration of NOx emissions in an internal combustion engine using a hydrogen additive, working on a Diesel cycle, has decreased by 52 %.The research results confirm the prospects of using a hydrogen additive, which is done for the first time for internal combustion engines running on the Diesel cycle in commercial and municipal vehicles. This guarantees increased environmental safety in urban agglomerations.


2018 ◽  
pp. 36-41 ◽  
Author(s):  
Роман Миколайович Радченко ◽  
Максим Андрійович Пирисунько

Solving the problem of ocean's airspace polluting with harmful emissions of ship-generated diesel engines by exhaust gases is associated with the creation of highly effective technologies for the neutralization of nitrogen oxides NOx from the diesel plant that apply both to vessels in service, designed and built. The air entering the engine is a working fluid that carries out a certain thermodynamic cycle, resulting in a change in its chemical composition, and the exhaust gas mixture contains many components. Emissions of harmful substances during the combustion of marine fuels are limited in accordance with international programs for the protection of the atmosphere and requirements of the International Maritime Organization IMO. Requirements apply all groups of harmful emissions of marine engines. The most stringent of them concern nitrogen oxides NOx and sulfur oxides SOx. To reduce harmful emissions from the exhaust gases into the environment, scientists and world leaders in engine construction, such as MAN Energy Solutions and Wärtsilä, apply and offer a variety of techniques to reduce the number of harmful substances in the exhaust gases. One of the most promising is the exhaust gas recirculation system (EGRS) of the ship diesel engine. Its advantage over other methods is the insignificant impact on the operation of the engine. During the exhaust gas recycling a temperature of the flame in the combustion chamber decreases, which leads to the reduction of NOx number. This is a consequence of the high rates of carbon dioxide and water vapor. Since the combustion rate is reduced, the exhaust temperature and the thermal load on the engine part are increased. The dilution of the inflow air with waste gas reduces the oxygen content in the supercharged air from 21 to 13%. The possibilities of the technology of the system of recirculation of exhaust gases of a marine engine are limited by the value of the ratio of O2/CO2 in the intake air, due to which the amount of combustion products at the inlet is limited to no more than 30%


2018 ◽  
Vol 19 (6) ◽  
pp. 502-505
Author(s):  
Szymon Kołodziej

In this article, the issues related to vehicular traffic in big cities and heightened harmful substance emissions stemming from it were described. In the research part, the effect of air leakage in the SI engine intake manifold on substance emissions was investigated. The manifold was customized to simulate air leakage in each of its air ducts. Same ratio of leakage was assumed for each duct, and substance emissions were measured in full range of engine rotational speeds. A difference in exhaust gas composition was shown for each researched variant, being the result of varying cylinder filling ratio due to simulated air leakage.


Author(s):  
V. A. Kazakova ◽  
V. A. Shinkevich ◽  
E. M. Filippova ◽  
I. B. Ivleva

The standard of the organization directed on increase of efficiency and quality of monitoring procedure of emissions of harmful substances of the fulfilled gases of diesels of the capital repaired tractors and self-propelled farm vehicles which are in operation, intended for work and working in the conditions of unlimited and limited air exchange is developed — and establishes norms of emissions of harmful substances with the fulfilled gases, means of their definition, at control and bench tests of tractors and the agricultural cars. Technical characteristics of the fuel and engine oil intended for test of the diesel are defined. Modern control devices are optimized and techniques of tool control of the maintenance of CO, CH and NOx in the fulfilled gases of diesels of page are the agricultural cars.


Author(s):  
V. A. Kazakova ◽  
V. A. Shinkevich ◽  
E. M. Filippova ◽  
I. B. Ivleva

The standard of the organization directed on increase of efficiency and quality of monitoring procedure of emissions of harmful substances of the fulfilled gases of diesels of the capital repaired tractors and self-propelled farm vehicles which are in operation, intended for work and working in the conditions of unlimited and limited air exchange is developed and establishes norms of emissions of harmful substances with the fulfilled gases, means of their definition, at control and bench tests of tractors and the agricultural cars. Technical characteristics of the fuel and engine oil intended for test of the diesel are defined. Modern control devices are optimized and techniques of tool control of the maintenance of CO, CH and NOx in the fulfilled gases of diesels of page are the agricultural cars.


2019 ◽  
Vol 100 ◽  
pp. 00015
Author(s):  
Nataliia Fialko ◽  
Raisa Navrodska ◽  
Malgorzata Ulewicz ◽  
Georgii Gnedash ◽  
Sergii Alioshko ◽  
...  

The results of studies on improving the environmental characteristics of boiler plants of municipal heat-power engineering in the application of technologies for the deep recovery of heat from exhaust-gases of gas-fired boilers are presented. The data on the reduction of environment by reducing the amount and temperature of harmful emissions resulting from fuel combustion are given. The data are given for boiler plants equipped with complex heat-recovery systems characterized by cooling the exhaust-gases below the dew point of the water vapor contained in them. It is shown that the decrease in emissions is due to a decrease in fuel consumption in boilers due to the beneficial use of the heat of exhaust-gases in these systems and the dissolution of nitrogen and carbon oxides in the condensate, formed in the heat-recovery equipments. The analysis of improving the environmental safety of boiler plants when used in heat-recovery technologies of corrosion protection systems for chimneys has been performed. Anticorrosion protection is provided by preventing condensate formation in the exhaust-gas ducts of boiler plants when using technologies for the deep recovery of exhaust-gas heat. To prevent condensate formation, the method of pre-drying cooled exhaust-gases in a heat exchanger-preheater installed after heat-recovery equipment is used. It is also shown that the use of complex heat-recovery systems provides in the boiler plant additional water in the form of condensate formed during condensation of moisture from exhaust-gases. Receipt of this condensate is another ecological effect of heat-recovery, which allows reducing the consumption of natural water resources for supply municipal heat networks.


Sign in / Sign up

Export Citation Format

Share Document