scholarly journals Multicast Energy Aware Routing ‎in Wireless Networks

2016 ◽  
Vol 5 (3) ◽  
pp. 127-133
Author(s):  
Ahmad Karimi

Multicasting is a service for disseminating data to a group of hostsand it is of paramount importance in applications with a close collabo-ration of network hosts. Due to limited energy available in the wirelessdevices, energy management is one of the most important problems inwireless networks. Energy aware routing strategies help us to mini-mize the energy costs for communication as much as possible and toincrease the network lifetime. In this paper, we address the problemof energy efficient routing to increase the lifetime of the network. Wepresent three new strategies for online multicast energy aware routingin wireless networks to increase the network lifetime.

Author(s):  
Nadeem Iqbal ◽  
Mohammad Shafie Bin Abd Latiff ◽  
Shafi’i Muhammad Abdulhamid

Dynamic topology change and decentralized makes routing a challenging task in mobile ad hoc network. Energy efficient routing is the most challenging task in MANET due to limited energy of mobile nodes. Limited power of batteries typically use in MANET, and this is not easy to change or replace while running communication. Network disorder can occur for many factors but in middle of these factors deficiency of energy is the most significant one for causing broken links and early partition of the network. Evenly distribution of power between nodes could enhance the lifetime of the network, which leads to improving overall network transmission and minimizes the connection request. To discourse this issue, we propose an Energy Aware Routing Protocol (EARP) which considers node energy in route searching process and chooses nodes with higher energy levels. The EARP aim is to establish the shortest route from source to destination that contains energy efficient nodes. The performance of EARP is evaluated in terms of packet delivery ratio, network lifetime, end-to-end delay and throughput. Results of simulation done by using NS2 network simulator shows that EARP can achieve both high throughput and delivery ratio, whereas increase network lifetime and decreases end-to-end delay.


Author(s):  
Kummathi Chenna Reddy ◽  
Geetha D. Devanagavi ◽  
Thippeswamy M. N.

Wireless sensor networks are typically operated on batteries. Therefore, in order to prolong network lifetime, an energy efficient routing algorithm is required. In this paper, an energy-aware routing protocol for the co-operative MIMO scheme in WSNs (EARPC) is presented. It is based on an improved cluster head selection method that considers the remaining energy level of a node and recent energy consumption of all nodes. This means that sensor nodes with lower energy levels are less likely to be chosen as cluster heads. Next, based on the cooperative node selection in each cluster, a virtual MIMO array is created, reducing uneven distribution of clusters. Simulation results show that the proposed routing protocol may reduce energy consumption and improve network lifetime compared with the LEACH protocol


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aparna Ashok Kamble ◽  
Balaji Madhavrao Patil

Abstract Wireless networks involve spatially extended independent sensor nodes, and it is associated with each other’s to preserve and identify physical and environmental conditions of the particular application. The sensor nodes batteries are equipped with restricted energy for working with an energy source. Consequently, efficient energy consumption is themain important challenge in wireless networks, and it is outfitted witharestricted power storage capacity battery. Therefore, routing protocol with energy efficiency is essential in wireless sensor network (WSN) to offer data transmission and connectivity with less energy consumption. As a result, the routing scheme is the main factor for decreasing energy consumption and the network's lifetime. The energy-aware routing model is mainly devised for WSN with high network performance when transmitting data to a sink node. Hence, in this paper, the effectiveness of energy-aware routing protocols in mobile sink-based WSNs is analyzed and justified. Some energy-aware routing systems in mobile sink-based WSN techniques, such as optimizing low-energy adaptive clustering hierarchy (LEACH) clustering approach, hybrid model using fuzzy logic, and mobile sink. The fuzzy TOPSIS-based cluster head selection (CHS) technique, mobile sink-based energy-efficient CHS model, and hybrid Harris Hawk-Salp Swarm (HH-SS) optimization approach are taken for the simulation process. Additionally, the analytical study is executed using various conditions, like simulation, cluster size, nodes, mobile sink speed, and rounds. Moreover, the performance of existing methods is evaluated using various parameters, namely alive node, residual energy, delay, and packet delivery ratio (PDR).


2021 ◽  
Author(s):  
Waqas Shah

As the world’s economic activities are expanding, the energy comes to the fore to the question of the sustainable growth in all technological areas, including wireless mobile networking. Energyaware routing schemes for wireless networks have spurred a great deal of recent research towards achieving this goal. Recently, an energy-aware routing protocol for MANETs (so-called energy-efficient ad hoc on-demand routing protocol (EEAODR) for MANETs was proposed, in which the energy load among nodes is balanced so that a minimum energy level is maintained and the resulting network lifetime is increased. In this paper, an Ant Colony Optimization (ACO) inspired approach to EEAODR (ACO-EEAODR) is proposed. To the best of our knowledge, no attempts have been made so far in this direction. Simulation results are provided, demonstrating that the ACO-EEAODR outperforms the EEAODR scheme in terms of energy consumed and network lifetime, chosen as performance metrics.


2020 ◽  
Vol 16 (3) ◽  
pp. 1-31
Author(s):  
Varsha Shani ◽  
Manju Bala ◽  
Manoj Kumar ◽  
Neeraj Kumar

Introduction: This article is the result of the research “Energy efficient routing protocols in wireless sensor network: Examine the impact of M-SEEC routing protocols on the lifetime of WSN with an energy efficient TABU optimization routing protocol”developed in the IKG, Punjab Technical University, India in 2019.Problem: The task of finding and maintaining routes in WSNs is non-trivialsince energy restrictions and sudden changes in node status cause frequent and unpredictable changes.Objective: The objective of this paper is to propose an energy efficient heterogeneous protocolwith the help of a hybrid meta-heuristic technique.Methodology: In the hybrid meta-heuristic technique, the shortest route has been selected and the data forwarded to the sink in a minimal time span,savingenergy and making the network more stable. To evaluate the technique, a new hybrid technique has been created where the data transmission is implemented from the beginning under MATLAB 2013a.Results: The proposed technique is better than the existing ones since the remaining energy in the network is increased by 62% compared to normal nodes in MSEEC, 65% compared to advanced nodes in MSEEC and 70% compared to super nodes in MSEEC. The network lifetime was also enhanced by 70.8% compared to MSEEC.Conclusion: The proposed protocol was found to be superior based on the average residual energy.This paper proposes an efficient routing mechanism towards the energy efficient network.Originality: Through this research, a novel version of MSEEC protocol is carried out using the TABU search mechanism to generate the functions of two neighbourhoods to detect the optimum path with the aim of maximizing the network lifetime in an area of 200×200m2.Limitations: The lack of other routing techniques falls under swarm intelligence.


Author(s):  
Tamaghna Acharya ◽  
Santi P. Maity

The acute scarcity of radio frequency spectrum has inspired to think of a new communication technology where the devices are expected to be able to sense and adapt to their spectral environment, thereby appearing as cognitive radios (CR) who can share opportunistically the bands assigned to primary users (PUs). At the same time, low cost, increased coverage, enhanced capacity, infrastructure-less configuration, and so forth, become the essence of future wireless networks. Although the two research fields came up independently, in due time it is observed that CR has a promising future and has excellent applications in wireless networks. To this aim, this chapter explores some scope of integration in CR and ad hoc networks (called here CRAHNETs) in some specific design perspective. First, a brief literature review on CR power allocation and energy aware routing in wireless ad hoc networks (WANETs) is done that highlights the importance for the scope of their integration. Then, power allocation in CRAHNETs with extended network lifetime is considered as an example problem. More specifically, the design problem is: given a set of paths (routes) between a pair of source (S) and destination (D) nodes in CRAHNETs, how to allocate optimal power to the source and relay nodes such that outage probability for data transmission is minimized and network lifetime is enhanced, while meeting the limits of total transmit power of CRs and interference threshold to PU simultaneously. A solution for the stated problem is proposed along with performance evaluation. A few related research problems are mentioned as future research directions.


Author(s):  
Sardjoeni Moedjiono ◽  
Aries Kusdaryono

Preserving energy of sensor node in wireless sensor network is an effort to prolong the lifetime of network. Energy of sensor node is very crucial because battery powered and irreplaceable. Energy conservation of sensor node is an effort to reduce energy consumption in order to preserve resource for network lifetime. It can be achieved through efficient energy usage by reducing consumption of energy or decrease energy usage while achieving a similar outcome. In this paper, the authors propose power layer energy efficient routing protocol in wireless sensor network, named PLRP, which use power control and multi-hop routing protocol to control overhead of sensor node and create clustering to distribute energy dissipation and increase energy efficiency of all sensor node. The main idea of PLRP is the use of power control, which divide sensor node into group by base station uses layer of energy and maximize the computation energy in base station to reduce computational energy in sensor node for conservation of network lifetime. The performance of PLRP compared to BCDCP and BIDRP based of hierarchical routing protocol. The simulation results show that PLRP achieve 25% and 30% of improvement on network lifetime.


Sign in / Sign up

Export Citation Format

Share Document