scholarly journals Improving the quality cell yield of T-cell immunotherapies through selective pressures imparted by culture media supplements

2020 ◽  
Vol 6 (2) ◽  
pp. 287-294
Author(s):  
Steven Thompson ◽  
Steven Thompson ◽  
Alex Klarer ◽  
David Smith ◽  
Steve Charlebois ◽  
...  
2020 ◽  
Vol 10 (4) ◽  
pp. 617-622
Author(s):  
Mehdi Talebi ◽  
Hojjatollah Nozad Charoudeh ◽  
Ali Akbar Movassaghpour Akbari ◽  
Behzad Baradaran ◽  
Tohid Kazemi

Purpose : Because of different potentials of T-cell subtypes in T-cell based cellular immunotherapy approaches such as CAR-T cell therapies; Regarding the high cost of the serum-free specific culture media, having distinct control on T-cell subset activation, expansion and differentiation seem crucial in T-cell expansion step of cell preparation methods. By the way, there was no clear data about the effect of acellular Wharton’s Jelly (AWJ) on T-cells expansion, activation or differentiation status. So, we have launched to study the effect of AWJ on T-cell’s immunobiological properties. Methods: CD3+ T-cells were isolated from healthy bone marrow allogeneic donors, sorted by FACS method and cultured on either routine phyto-hemagglutinin complemented and different concentrations of AWJ, lag phase and doubling time of the cells calculated from cell growth curve. After 3, 7 and 14-days T-cell subtypes cell markers and cell activity related genes expression rate have been evaluated by flow cytometry and real-time polymerase chain reaction (PCR) methods respectively. Results: AWJ in a 1:1 ratio compared with contemporary lymphocyte culture media showed significant activating and proliferative capacities. The introduced condition has not affected the frequency of CD4+ subpopulation of T-cells, but significantly increased even CD8+ cells and immune-activator genes in T-cells. The regulatory and memory subsets of T-cells in this study have not affected significantly. Conclusion: the study results revealed that AWJ can be utilized as a supportive substance to increase the memory properties of the T-cells, gives control to design a selective medium for expanding and differentiating memory T-cells, relatively.


2006 ◽  
Vol 87 (5) ◽  
pp. 1285-1294 ◽  
Author(s):  
Guerau Fernàndez ◽  
Anuska Llano ◽  
Miriam Esgleas ◽  
Bonaventura Clotet ◽  
José A. Esté ◽  
...  

Human immunodeficiency virus type 1 (HIV-1) infection is established by virus variants that use the CCR5 co-receptor for entry (CCR5-tropic or R5 variants), whereas viruses that use CXCR4 as co-receptor (CXCR4-tropic or X4 variants) emerge during disease progression in approximately 50 % of infected subjects. X4 variants may have a higher fitness ex vivo and their detection is usually accompanied by faster T-cell depletion and the onset of AIDS in HIV-1-positive individuals. Here, the relationship between the sequence variation of the HIV-1 env V3–V5 region and positive selective pressure on R5 and X4 variants from infected subjects with CD4 T cell counts below 200 cells μl−1 was studied. A correlation was found between genetic distance and CD4+ cell count at late stages of the disease. R5 variants that co-existed with X4 variants were significantly less heterogeneous than R5 variants from subjects without X4 variants (P<0·0001). Similarly, X4 variants had a significantly higher diversity than R5 variants (P<0·0001), although residues under positive selection had a similar distribution pattern in both variants. Therefore, both X4 and R5 variants were subjected to high selective pressures from the host. Furthermore, the interaction between X4 and R5 variants within the same subject resulted in a purifying selection on R5 variants, which only survived as a homogeneous virus population. These results indicate that R5 variants from X4 phenotype samples were highly homogeneous and under weakly positive selective pressures. In contrast, R5 variants from R5 phenotype samples were highly heterogeneous and subject to positive selective pressures.


2015 ◽  
Vol 35 (10) ◽  
pp. 1657-1663 ◽  
Author(s):  
Trisha R Sippel ◽  
Takeru Shimizu ◽  
Frank Strnad ◽  
Richard J Traystman ◽  
Paco S Herson ◽  
...  

Transient suppression of peripheral immunity is a major source of complication for patients suffering from ischemic stroke. The release of Arginase I (ArgI) from activated neutrophils has recently been associated with T-cell dysfunction in a number of pathologies. However, this pathway has not been previously explored in ischemic stroke. Using the murine model of transient middle cerebral artery occlusion, we explored effects of stroke on peripheral T-cell function and evaluated the role of neutrophils and ArgI. Stimulation of splenic T cells from post-stroke animals with anti-CD3/CD28 resulted in decreased proliferation and interferon-γ production when compared with sham-surgery controls. Flow cytometric analysis of intrasplenic leukocytes exposed the presence of a transient population of activated neutrophils that correlated quantitatively with elevated ArgI levels in culture media. In vitro activation of purified resting neutrophils from unmanipulated controls confirmed the capacity for murine neutrophils to release ArgI from preformed granules. We observed decreased expression of the L-arg-sensitive CD3ζ on T cells, consistent with decreased functional activity. Critically, L-arg supplementation restored the functional response of post-stroke T cells to mitogenic stimulation. Together, these data outline a novel mechanism of reversible, neutrophil-mediated peripheral immunosuppression related to ArgI release following ischemic stroke.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3912-3912 ◽  
Author(s):  
Tomonori Kato ◽  
Tetsuya Nishida ◽  
Miho Murase ◽  
Makoto Murata ◽  
Tomoki Naoe

Abstract Abstract 3912 Cytomegalovirus (CMV) is one of the most common pathogens causing morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT), despite preemptive treatments employing antiviral drugs. Cytotoxic T cells are indispensable to control CMV infections. Chronic viral infections with human immunodeficiency virus or hepatitis C virus were shown to be associated with exhausted T cells with high expression of the inhibitory molecule programmed death 1 (PD-1). Recently, it has been reported that PD-1 up-regulation on CMV specific T cells was associated with CMV infection after renal and liver transplantation. PD-1 expression on CMV specific T cells after HSCT has not been well examined. We evaluated the involvements of exhausted CMV specific T cells characterized by high PD-1 expression in persistent CMV infection after allogeneic HSCT. Peripheral blood mononuclear cells (PBMC) and serum were obtained from an HLA-A*2402-positive patient who had received bone marrow transplantation from an HLA-A, B, C and DR matched unrelated donor. This patient failed to eliminate CMV for more than one year after transplantation despite intermittent administration of ganciclovir and foscarnet. Control PBMC and serum were obtained from an HLA-A*2402-positive healthy volunteer because the Japan Marrow Donor Program prohibits blood collection for research use from donor. All blood was collected with written informed consent. We at first analyzed frequencies of CMV-specific CD8+ T cells in patient and control PBMC by flow cytometer using QYDPVAALF/A*2402-specific tetramer and CD8 antibodies. QYDPVAALF is derived from CMV pp65 protein and presented by the HLA-A*2402 molecule. Tetramer stained cells were detected in the patient PBMC but control PBMC (0.11% versus undetectable). Patient and control PBMC were stimulated by a synthetic peptide QYDPVAALF in culture media containing IL-2 for 14 days, and stained with QYD/A*2402-specific tetramer. Remarkably, post-stimulated patient PBMC contained only 0.54% of tetramer stained CD8+ T cells, whereas a more dramatic increase (14.1%) in control PBMC. We analyzed frequencies of IFN-g secreting CD8+ T cells in PBMC after stimulation with a peptide pool covering the whole CMV pp65 protein for 4 hours. Less patient CD8+ T cells produced IFN-g, compared with the control CD8+ T cells (0.5% versus 1.1%) These data demonstrate dysfunction of CMV-specific CD8+ T cells in the patient with persistent CMV infection. To examine the mechanism of dysfunction of CMV-specific CD8+ T cells, we analyzed the expression of PD-1 on CMV-specific CD8+ T cells 14 days after stimulation with QYDPVAALF peptide. Multiparameter flow cytometry and tetramer assay exhibited higher expression of PD-1 on CMV-specific CD8+ T cells generated from patient PBMC, compared with CMV-specific CD8+ T cells generated from control PBMC. To find out whether the engagement of PD-1 to its ligand (PD-L1) leads to T cell exhaustion, we stimulated patient PBMC with QYDPVAALF peptide for 14 days in the presence or absence of anti PD-L1 antibody which blocks PD-1/PD-L1 inhibitory pathway. Blockade of PD-1/PD-L1 pathway resulted in 3.9-fold increase in patient CMV specific T cells. These findings demonstrate that PD-1 is associated with the exhaustion of CMV specific CD8+ T cells during persistent CMV infection in this patient. To examine the effect of patient serum on CMV specific CD8+ T cells, we stimulated patient PBMC with QYDPVAALF peptide for 14 days in culture media with patient or control serum. CMV specific CD8+ T cells increased 4-fold and 55-fold in the presence of patient and control serum, respectively. Patient serum led to higher PD-1 expression on CMV specific CD8+ T cells, compared with control serum (Fig). These findings suggest that patient serum may contain what regulates PD-1 expression level of exhausted T cells. Further investigations to identify factors regulating PD-1 expression in patient serum are in progress. The identification of the factors may provide new strategies to improve exhausted T cell function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3645-3645
Author(s):  
Paul Greaves ◽  
Sameena Iqbal ◽  
David C Taussig ◽  
John G. Gribben

Abstract Abstract 3645 Introduction: The bulk of the tumour infiltrate in classical Hodgkin lymphoma (CHL) is composed of immune cells, predominantly CD4+ T cells, with the malignant Hodgkin Reed Sternberg cell (HRS) representing <1% of cells. The lymphoid microenvironment has been described as anergic and hypoproliferative with suppressive properties (Marshall et al. Blood 2004 103:1755–62) but the functional significance of this is unclear. This study set out to examine the proliferative capacity and phenotype of T cells derived from CHL-diagnostic lymph node tissue taken at diagnosis. Method: Frozen single cell suspensions (SCS) from 6 patients were selected from the tissue bank of our Institute. T cell growth-augmenting and/or Th2 polarising cytokines were added in various combinations (IL2, IL4 only, IL2+4 or no added cytokine) to SCS-derived cells in 96 well plates at 0.3 × 106 cells per well in 200mcl of optimized lymphocyte culture media. No CD4+ enrichment step was carried out: all recovered cells were plated at baseline to maintain potential interactions between CD4+ cells and other cells, and no mitogen or T-cell receptor-stimulating or costimulating agents were added at any point. As controls, SCS derived from normal tonsil, and ÔreactiveÕ lymph nodes (n=4) (confirmed by histological report at the time of diagnosis) were also plated. Plates were examined daily for cell/colony morphology to estimate growth and split with fresh media and cytokines once every 7 days, with estimated proliferation (by haemocytometry) plotted. Cultures were assessed at baseline, 10 days, 28 days, 50 days and 100 days. Results: Proliferation, based on formation of discrete colonies and blastoid cell morphology, occurred in the majority of wells by day 7 in all CHL-derived cultures, and in a minority of wells, and to a lesser extent in all control cultures. CHL-derived T cells from one patient continue to expand after 200 days, doubling every 3–5 days, while the other 5 continue after 50–100 days. In contrast, no tonsil or reactive node-derived T cells survived beyond 50 days and none showed a net expansion in cell numbers. Growth was superior in the IL2+4 and IL2-only conditions, with no growth in the media-only or IL4-only conditions. The most favorable condition was with the addition of IL2+4. By day 21 a net increase in CHL-derived T cells was apparent, but not in any control T cell populations (Figure). At baseline, composition of the CHL-derived cells revealed a majority of CD3+ cells as expected, of which 60–80% were CD4+ and the remainder CD8+. By D21 the CD4+ component had outgrown all other cells in the CHL-derived cultures, being CD3+CD4+CD45RO+ consistent with antigen-experienced T helper cells, while all tonsil and reactive node-derived cells were CD8+CDRO+. Markers of central memory (CCR7 & CD62-L), Th2 (CCR4 and IL4), Treg (FOXP3 and CD25) and anergy (CD57) were absent after expansion, while markers of activation were upregulated (CD28, CD27, CD69, CD40L, CD30 & CD95). This phenotype persisted in the ongoing T cell lines. Conclusions: The CD4+ compartment of the CHL microenvironment contains a primed subset of cells capable of massive expansion without further mitogenic stimulation and of generating cytokine-dependent continuous cell lines with an antigen-experienced, activated phenotype. This challenges the assumption of T cell anergy and hypoproliferation in the tissue microenvironment of CHL. We are currently assessing the function and anti-tumor specific or tumor supportive nature of these T cells. Disclosures: Gribben: Roche: Honoraria; Celgene: Honoraria; GSK: Honoraria; Mundipharma: Honoraria; Gilead: Honoraria; Pharmacyclics: Honoraria.


2004 ◽  
Vol 72 (10) ◽  
pp. 5622-5629 ◽  
Author(s):  
Jochen Stritzker ◽  
Jozef Janda ◽  
Christoph Schoen ◽  
Marcus Taupp ◽  
Sabine Pilgrim ◽  
...  

ABSTRACT Mutants of Listeria monocytogenes with deletions in genes of the common branch of the biosynthesis pathway leading to aromatic compounds were constructed as possible virulence-attenuated carrier strains for protein antigens or vaccine DNA. aroA, aroB, and in particular aroE mutants showed strongly reduced growth rates in epithelial cells and even in rich culture media. The metabolism of the aro mutants under these conditions was predominantly anaerobic. Aerobic metabolism and a wild-type growth rate were, however, regained upon the addition of vitamin K2, suggesting that the aro mutants are deficient in oxidative respiration due to the lack of menaquinone. Replication of the aro mutants in the host cell's cytosol and cell-to-cell spread were drastically slowed down, and all aro mutants showed high virulence attenuation in mice, i.e., the 50% lethal dose in BALB/c mice was increased at least 104-fold for the aroA, aroB, and aroA/B mutants and >105-fold for the aroE mutant compared to the parent strain. Nevertheless, mice preimmunized with aro mutant bacteria elicited good T-cell response and full protection against a subsequent challenge with the virulent wild-type strain. A total of 5 × 106 aroA, aroB, and aroA/B mutant bacteria were sufficient to obtain a protective T-cell response, while 5 × 108 aroE or aroA/E mutants were necessary to achieve comparable numbers of antigen-specific T cells. These numbers were well tolerated without causing any signs of disease, indicating that Listeria strains with deletions in genes of the basic branch of the aromatic amino acid pathway could be useful vaccine carriers for inducing T-cell immunity.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3514-3514
Author(s):  
Yong Chan Kim ◽  
Ai-Hong Zhang ◽  
Jeong Heon Yoon ◽  
David William Scott

Abstract Expanded antigen-specific engineered regulatory T cells (Tregs) have been proposed for potential clinical application for the treatment of undesirable immune responses, such as inhibitor responses in hemophilia A patients and autoimmune diseases. By providing an antigen-specific T-cell receptor (TCR) to polyclonal natural Tregs, we suggested that antigen-specific engineered Tregs would migrate specifically to particular target tissues and induce antigen-specific immune tolerance in the local milieu. Previously, we developed FVIII C2-specific Tregs using a long-term stabilization protocol in vitro and demonstrated that these stabilized engineered Tregs successfully modulated FVIII-specific T-cell- and B-cell immune responses. Herein, we examined the mechanism of suppression by antigen-specific engineered Tregs compared to polyclonal normal natural Tregs. Initially, we tested whether these FVIII-specific engineered Tregs were able to suppress neighboring activated T-cell effectors locally. We found that FVIII C2-specific Tregs strongly suppressed myelin basic protein (MBP)-specific T effectors by presentation of both specific antigens in same APC population. However, we also observed that C2-specific Tregs could suppress MBP-specific T effectors presented on different APCs. These results imply contactless suppressive function of C2-specific engineered Tregs. Using a modified trans-well suppression assay, in which physical distance and clear separation between Tregs and a set of T effectors was created, we found that C2-specific activated Tregs showed significant contactless suppression only when T effectors were also present. In addition, and confirming previous studies with polyclonal Tregs, suppression by FVIII-specific engineered Tregs could be overcome by increasing the dose of IL-2 in co-culture media. This suggests that Tregs act, in part, by usurping IL-2 needed by T effectors to proliferate. Surprisingly, neutralization of CTLA-4 did not interfere with FVIII C2-specific suppression of engineered Tregs in contrast to the reversal seen with anti-CD3e-driven non-specific immunosuppression. Our data strongly suggest that suppressive function of FVIII-specific engineered Tregs is not restricted to cell-to-cell contact. Rather cross-talk of engineered Tregs and T effectors potentially generate a contactless suppressive mechanism to suppress other FVIII-specific multiple effector cells in the local milieu for effective immune tolerance. Understanding the mechanism of contactless suppression mechanism should provide critical clues to develop more effective engineered Tregs as a therapeutic tool in hemophilia A. (Supported by NIH grants HL061883 and HL126727) Disclosures Kim: Henry Jackson Foundation: Other: patent filed. Zhang:Henry Jackson Foundation: Other: patent filed. Scott:Henry Jackson Foundation: Other: patent filed.


2019 ◽  
Author(s):  
Nathan J. Dwarshuis ◽  
Hannah W. Song ◽  
Anokhi Patel ◽  
Theresa Kotanchek ◽  
Krishnendu Roy

AbstractAdoptive cell therapies (ACT) using chimeric antigen receptor (CAR) T cells have shown promise in treating cancer, but manufacturing large numbers of high quality cells remains challenging. Critically, current T cell expansion technologies only partially recapitulate thein vivomicroenvironment found in the human lymph nodes. In these organs, T cells expand at high cell density with autocrine/paracrine signaling, as well as signals from the extracellular matrix (ECM). Here we describe a T cell expansion system using degradable gelatin microcarriers functionalized with anti-CD3 and anti-CD28 monoclonal antibodies (mAbs), which address several of these shortcomings. We show that using this system, we can achieve approximately 2-fold greater expansion compared to functionalized magnetic beads, the current industry standard. Furthermore, carriers generated higher numbers of CCR7+CD62L+ migratory, central memory T cells and CD4+ T cells across multiple donors. Both these phenotypes have emerged as important for establishing durable and effective responses in patients receiving T cell immunotherapies. We further demonstrate that carriers can achieve greater memory cell yield compared to beads across a range of IL2 concentrations from 20 U/mL to 100 U/mL. These differences were greater at lower IL2 concentrations, indicating that the carriers are more efficient. We optimized this system using a design of experiments (DOE) approach and found that the carrier concentration affects the memory cell yield in a quadratic manner, where high or low concentrations are detrimental to memory formation. Finally, we show that carriers do not hinder CAR transduction and can maintain the CD4 and memory phenotype advantages in CAR-transduced T cells.


Sign in / Sign up

Export Citation Format

Share Document