Improving the Performance of the Hydraulic Drive of an All-Terrain Vehicle in Low Temperature Conditions

Author(s):  
M.V. Tsvetkov ◽  
A.A. Nikitin

Currently, 70 % of Russian localities with a population of 9 million people are not connected to the transport system of the country by paved roads, especially in the northern regions, where the ambient temperature in winter does not rise above -500C. Road transport accounts for the largest number of transported goods. One of the vehicles of this type is an all-terrain vehicle Trackol, designed to move on roads with a weak surface: on snow, swamp and soil cover of thawed taiga. The analysis of the vehicle Trackol operation has shown insufficient reliability of its transmission. Analysis of of using the vehicle Trackol showed insufficient reliability of its transmission. To improve the situation the mechanical transmission has been replaced with a hydraulic one, taking into account the main disadvantages associated with maintaining the cleanliness of the working fluid. A system for regulating the temperature of the working fluid in the hydraulic drive of an all-terrain vehicle has been developed. The design of the working fluid filter is proposed, allowing capturing not only dirt, but also moisture due to the use of polyvinylformal of the TPVF brand as the filter element material.

2021 ◽  
Author(s):  
V.I. Posmetev ◽  

Substantiated the actual direction of increasing the efficiency of timber road transport, which consists in the development and use in its design of recuperative mechanisms based on various methods of conversion and accumulation of compressed gas energy. A promising recuperative hydraulic drive of a timber tractor with a dismantling trailer has been proposed. A preliminary assessment of the operation of the mechanism for converting the energy of the working fluid into the energy of compressed gas has been carried out on the basis of simulation.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042087
Author(s):  
A S Kaverzina ◽  
A S Lunev ◽  
I V Karnaukhov ◽  
M D Pankiv ◽  
I V Andreychikov

Abstract In this paper, the problem of the influence of climatic conditions on the performance of a Hydraulic gear is considered. The importance of the work is due to the fact that the methods for solving the problem are proposed, namely, the use of preheating for a Hydraulic gear and an internal combustion engine under refrigeration. The use of hydrofected self-propelled vehicles in the northern regions in winter is considered. The factors determining the technical and economic indicators of hydrofected machines are revealed. The influence of negative temperature on the physical and mechanical properties of hydraulic equipment materials is also considered. Three main directions have been identified in which temperature affects the hydraulic drive. An experiment was conducted in which the dependence of the performance of the machine was revealed using a preheating device for the working fluid and without the device.


2020 ◽  
pp. 77-78

The use of ultra-high molecular weight polyethylene (UHMW PE) for the manufacture of various parts, in particular cuffs for hydraulic drives, is proposed. The properties and advantages of UHMW PE in comparison with other polyethylene materials are considered. Keywords ultra-high molecular weight polyethylene, hydraulic pump, hydraulic motor, hydraulic control valve, hydraulic oil, low temperature. [email protected]


Author(s):  
Priyanka Verma ◽  
Ravinder Kumar Wanchoo ◽  
Amrit Pal Toor

Sulphonate-grafted-Titania (SO3H-TiO2) quantum dot catalyzed photochemical process offered an energy-efficient, accelerated, and safe approach to synthesize lactic acid esters at ambient temperature conditions. This low-temperature route is conceived in line...


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 821
Author(s):  
Qin-Liu Cao ◽  
Wei-Tao Wu ◽  
Wen-He Liao ◽  
Feng Feng ◽  
Mehrdad Massoudi

In general, rheological properties of gelled fuels change dramatically when temperature changes. In this work, we investigate flow and heat transfer of water-gel in a straight pipe and a tapered injector for non-isothermal conditions, which mimic the situations when gelled fuels are used in propulsion systems. The gel-fluid is modeled as a non-Newtonian fluid, where the viscosity depends on the shear rate and the temperature; a correlation fitted with experimental data is used. For the fully developed flow in a straight pipe with heating, the mean apparent viscosity at the cross section when the temperature is high is only 44% of the case with low temperature; this indicates that it is feasible to control the viscosity of gel fuel by proper thermal design of pipes. For the flow in the typical tapered injector, larger temperature gradients along the radial direction results in a more obvious plug flow; that is, when the fuel is heated the viscosity near the wall is significantly reduced, but the effect is not obvious in the area far away from the wall. Therefore, for the case of the tapered injector, as the temperature of the heating wall increases, the mean apparent viscosity at the outlet decreases first and increases then due to the high viscosity plug formed near the channel center, which encourages further proper design of the injector in future. Furthermore, the layer of low viscosity near the walls plays a role similar to lubrication, thus the supply pressure of the transport system is significantly reduced; the pressure drop for high temperature is only 62% of that of low temperature. It should be noticed that for a propellent system the heating source is almost free; therefore, by introducing a proper thermal design of the transport system, the viscosity of the gelled fuel can be greatly reduced, thus reducing the power input to the supply pressure at a lower cost.


2015 ◽  
Vol 28 (5) ◽  
pp. 2015-2027 ◽  
Author(s):  
Maria Luisa De Maio ◽  
Antonino Vitetta

Author(s):  
Yilu Lin ◽  
Han Wu ◽  
Karthik Nithyanandan ◽  
Timothy H. Lee ◽  
Chia-fon F. Lee ◽  
...  

Bio-butanol, a promising alternative transportation fuel, has its industrial-scale production hindered significantly by high cost component purification process from acetone-butanol-ethanol (ABE) broth. The purpose of this study is to investigate the possibility of using ABE-Diesel blends with high ABE percentages as an alternative transportation fuel. An optical-accessible constant volume chamber capable of controlling ambient temperature, pressure and oxygen concentration was used to mimic the environmental conditions inside a real diesel engine cylinder. ABE fuel with typical volumetric ratios of 30% acetone, 60% butanol and 10% ethanol were blended with ultra-low sulfur diesel at 80% vol. and were tested in this study. The ambient temperature was set to be at 1100K and 900K, which represents normal combustion conditions and low temperature combustion conditions respectively. The ambient oxygen concentrations were set to be at 21%, 16% and 11%, representing different EGR ratios. The in-cylinder pressure was recorded by using a pressure transducer and the time-resolved Mie-scattering image and natural flame luminosity was captured using a high-speed camera coupled with a copper vapor laser. The results show that the liquid penetration is reduced by the high percentage of ABE in the blends. At the same time, the soot formation is reduced significantly by increasing oxygen content in the ABE fuel. Even more interesting, a soot-free combustion was achieved by combining the low temperature combustion with the higher percentage ABE case. In terms of soot emission, high ABE ratio blends are a very promising alternative fuel to be directly used in diesel engines especially under low-temperature combustion conditions.


2007 ◽  
Vol 558-559 ◽  
pp. 119-124
Author(s):  
Andrey Belyakov ◽  
Kaneaki Tsuzaki ◽  
Yoshisato Kimura ◽  
Yoshinao Mishima

15%Cr ferritic stainless steel was machined in rectangular samples and then processed by multiple forging to a total cumulative strain of 7.2 at an ambient temperature. The large strain deformation resulted in almost equiaxed submicrocrystalline structure with a mean grain/subgrain size of 230 nm and about 2.2×1014 m-2 dislocation density in grain/subgrain interiors. The annealing at a relatively low temperature of 500oC did not lead to any discontinuous recrystallizations. The grain/subgrain size and the interior dislocation density slightly changed to 240 nm and 2.1×1014 m-2, respectively, after annealing for 30 min, while the Vickers hardness decreased from 3140 MPa in the as-processed state to 2900 MPa. This annealing softening was attributed to remarkable release (by 50%) of internal stresses, which are associated with a non-equilibrium character of strain-induced grain/subgrain boundaries.


2011 ◽  
Vol 32 (3) ◽  
pp. 57-70 ◽  
Author(s):  
Dariusz Mikielewicz ◽  
Jarosław Mikielewicz

Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.


Sign in / Sign up

Export Citation Format

Share Document