scholarly journals Complex resistance of spring and winter bread wheat lines to biotic and abiotic stresses

2021 ◽  
Vol 25 (7) ◽  
pp. 723-731
Author(s):  
I. F. Lapochkina ◽  
N. R. Gainullin ◽  
O. A. Baranova ◽  
N. M. Kovalenko ◽  
L. A. Marchenkova ◽  
...  

An original initial material of spring and winter bread wheat with group resistance to stem and leaf rust was developed using new donors of resistance to stem rust: winter soft wheat GT 96/90 (Bulgaria) and accession 119/4-06rw with genetic material of the species Triticum migushovae and (Aegilops speltoides and Secale cereale), respectively, a line of spring wheat 113/00i-4 obtained using the species Ae. triuncialis and T. kiharae, as well as spring accession 145/00i with genetic material of the species Ae. speltoides resistant to leaf rust. The transfer of effective Sr-genes to progeny was monitored using molecular markers. New lines underwent a field assessment of resistance to leaf and stem rust in the epiphytotic development of diseases in the Central Region of the Russian Federation, as well as in the North Caucasus and Western Siberia, and showed high resistance to these pathogens. Fourteen genotypes of spring wheat with group resistance to these diseases and parental forms that participated in the origin of the lines were evaluated for resistance to spot blotch (Cochliobolus sativus) and tan spot (Pyrenophora tritici-repentis) using isolates from Kazakhstan and Omsk in laboratory conditions. A highly resistant parental form of winter soft wheat from “Arsenal” collection 119/4-06rw (wheat-Ae. speltoides-rye hybrid 2n = 42) with group resistance to two spots, four medium-resistant genotypes to both isolates of tan spot from Kazakhstan and Omsk populations of the pathogen, as well as genotypes resistant to the Omsk isolate of P. triticirepentis (parental form 113/00i-4 and lines 1-16i, 6-16i, 9-16i) were isolated. Among the lines of winter wheat, four were identified with group resistance to spot blotch and tan spot. Additionally, the stress resistance of the lines to NaCl salinization and prolonged flooding of seeds with water was evaluated at the early stages of ontogenesis in laboratory conditions. Lines 33-16i, 37-16i, 32-16i and 9-16i showed a high ability to withstand excess moisture. Lines 33-16i, 37-16i, 32-16i and 3-16i were characterized by high salt tolerance, exceeding the average of 49.7 %. Among the winter genotypes, lines were identified with increased resistance to hypoxia (37-19w, 32-19w, 16-19w, 90-19w) and with increased salt tolerance (20-19w, 9-19w, 37-19w, 90-19w), significantly exceeding the standard cv. Moskovskaya 39. The listed lines are of interest as sources of resistance to anaerobic and salt stress, as well as donors of resistance to a group of fungal diseases: leaf and stem rust and tan spot. We attribute the increased level of resistance of the new initial material to the presence of alien translocations in the original parental forms involved in the origin of the lines.

Author(s):  
UR Rosyara ◽  
RC Sharma ◽  
SM Shrestha ◽  
E Duveiller

Breeding for resistance to Helminthosporium leaf blight (HLB) caused by a complex of spot blotch (Cochliobolus sativus) and tan spot (Pyerenophora tritici-repentis Died) of wheat (Triticum aestivum L.) is difficult due to complex nature of resistance, and high influence of environment. This study was conducted to examine whether genotypes having variation in level of resistance and tolerance differ in compensation to loss of leaves. Five spring wheat genotypes with different levels of resistance and tolerance to HLB were grown under irrigated field conditions in randomized complete block design during 2001-2002 and 2002- 2003 wheat-growing season at Rampur, Chitwan, Nepal. Defoliation treatments consist of removal of flag (F), penultimate (F-1), and both F and F-1 leaves were done one day after anthesis. Results showed that defoliation had significant effects on grain yield, biomass yield, thousand-kernel weight (TKW) but not on harvest index, number of grains per spike, kernel per spikelet, and spikelets per spike. All genotypes included in this study showed some degree of compensation for loss of F, F-1, and both F and F-1 leaves, which was found to be variable between years. Removal of flag leaf was compensated by the resistant genotype NL750 for both grain yield and TKW but not for both F and F-1 leaves. Loss of both F and F-1 leaves was better compensated by BL 1473, a stably tolerant genotype in both years. For other genotypes sensitivity to defoliation was found as variable as tolerance to HLB. Key words: Spot blotch, tan spot, defoliation, compensation, flag leaf removal, penultimate leaf removal J. Inst. Agric. Anim. Sci. 26:43-50 (2005)


2019 ◽  
Vol 2 (2) ◽  
pp. 14-23
Author(s):  
A. S. Rsaliyev ◽  
E. I. Gultyaeva ◽  
E. L. Shaydayuk ◽  
N. M. Kovalenko ◽  
R. A. Moldazhanova ◽  
...  

Leaf and stem diseases (rusts and blotches) are harmful to spring wheat in all areas of its cultivation. The use of resistant varieties is an environmentally safe way of protection. The objective of the present study was to comprehensively evaluate leaf and stem disease resistance in 44 promising cultivars of soft spring wheat, as well as to identify Lr‑ and Sr‑genes in them. The accessions were obtained from the Kazakhstan‑Siberian Spring Wheat Improvement Network (KASIB) in 2017 and 2018. Wheat resistance to leaf and stem rust, to septoriosis and to tan spot was evaluated in field conditions in Southern Kazakhstan (infection plot at the Research Institute for Biological Safety Problems). Wheat seedlings resistance to septoriosis, leaf and stem rust was evaluated under laboratory conditions. The Lr and Sr genes were identified using a phytopathological test and molecular markers. Field studies resulted in selection of two lines, Lut. KS 14/09‑2 and SPCHS 69, with highly effective group resistance to rusts and blotches. By using molecular markers, the gene cluster Lr34/Sr57/Yr18/Pm38, Lr1 gene, and wheat‑rye translocation 1BL.1RS carrying genes Lr26/Sr31/Yr9/Pm8 were detected in Lut. KS 14/09‑2. A translocation from wheatgrass with highly effective genes of resistance to stem (Sr24) and leaf (Lr24) rusts, as well as 1AL.1RS translocation from rye with a complex of effective genes of resistance to fungous diseases and pests were detected in the line SPCHS 69. Eight wheat lines (Lut. 393/05, Lut. 2028, Lut. 261, Lut. 1103, Lut. 22‑17, Lut. 37‑17, line 4‑10‑16, Stepnaya 245) appeared to be resistant to Stagonospora nodorum blotch and tan spot; and four varieties (OmGAU‑100, Element 22, Stolypinskaya 2, and Silach) demonstrated resistance to leaf and stem rust. The molecular marker analysis showed moderate genetic diversity of the studied collection in terms of resistance genes. The genes Lr1, Lr9, Lr10, Lr19/Sr25, Lr24/Sr24, Lr26/Sr31/Yr9/Pm8, Lr34/Sr57/Yr18/Pm38, Lr37/Sr38/Yr17, both separately and in different combinations, were detected in the tested accessions. The evaluated material may be recommended for the use in wheat breeding for disease resistance in Russia and in Kazakhstan.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajeet Kumar Pandey ◽  
Vinod Kumar Mishra ◽  
Ramesh Chand ◽  
Sudhir Navathe ◽  
Neeraj Budhlakoti ◽  
...  

AbstractSpot blotch and terminal heat are two of the most important stresses for wheat in South Asia. A study was initiated to explore the use of spelt (Triticum spelta) to improve tolerance to these stresses in spring wheat (T. aestivum). We assessed 185 recombinant inbred lines (RILs) from the cross T. spelta (H + 26) × T. aestivum (cv. HUW234), under the individual stresses and their combination. H + 26 showed better tolerance to the single stresses and also their combination; grain yield in RILs was reduced by 21.9%, 27.7% and 39.0% under spot blotch, terminal heat and their combined effect, respectively. However, phenological and plant architectural traits were not affected by spot blotch itself. Multivariate analysis demonstrated a strong negative correlation between spikelet sterility and grain yield under spot blotch, terminal heat and their combination. However, four recombinant lines demonstrated high performance under both stresses and also under their combined stress. The four lines were significantly superior in grain yield and showed significantly lower AUDPC than the better parent. This study demonstrates the potential of spelt wheat in enhancing tolerance to spot blotch and terminal heat stresses. It also provides comprehensive evidence about the expression of yield and phenological traits under these stresses.


2021 ◽  
Vol 29 ◽  
pp. 74-81
Author(s):  
L. Golosna ◽  
O. G. Afanasieva ◽  
O.V. Shevchuk ◽  
L.O. Kucherova ◽  
I.S. Shvets ◽  
...  

Aim. To determine the resistance of winter wheat varieties to the main pathogens, to establish their stability and plasticity, to identify perspective sources of resistance. Methods. Laboratory – production of inoculum of pathogens; field – artificial inoculation,, assessment of variety stability; statistical calculation of disease severity, indicators of stability and plasticity. Results. In 2015–2017, the resistance of 43 varieties of winter wheat to the main pathogens of leaf diseases, common bunt and root rots was assessed. Resistance to powdery mildew was found in 32 varieties, tan spot – in 2, root rot – in 3, hard smut – in 2 varieties. Six varieties of winter wheat were characterized by group resistance. Varieties that combine high plasticity and stability of the sign of disease resistance have been identified. Conclusions. Valuable sources of resistance are winter wheat varieties with group resistance to common bunt and powdery mildew – Tradytsiia Odeska and Kurs; powdery mildew and tan spot – Nasnaga and Zolotonozhka; powdery mildew and root rot – Nezabudka and Shchedrist kyivska.Keywords: resistance, winter wheat, diseases, plasticity, stability.


Author(s):  
O. V. Pavlova ◽  
◽  
L. A. Marchenkova ◽  
R. F. Chavdar ◽  
T. G. Orlova ◽  
...  

The adaptive properties of spring wheat lines with foreign genetic material at the early stages of ontogenesis on the backgrounds of salinization with sodium chloride and prolonged flooding of seeds in water were evaluated. In the course of the work, different degrees of inhibition of growth processes were revealed, depending on the factor used and the genetic characteristics of the studied forms, a comprehensive (summary) assessment of the index of stability characterizing adaptability to adverse environmental factors was shown.


2014 ◽  
Vol 94 (7) ◽  
pp. 1297-1302 ◽  
Author(s):  
D. G. Humphreys ◽  
T. F. Townley-Smith ◽  
O. M. Lukow ◽  
B. D. McCallum ◽  
T. G. Fetch ◽  
...  

Humphreys, D. G., Townley-Smith, T. F., Lukow, O. M., McCallum, B. D., Fetch, T. G., Gilbert, J. A., Menzies, J. G., Tkachuk, V., Brown, P. D. and Fox, S. L. 2014. Peace hard red spring wheat. Can. J. Plant Sci. 94: 1297–1302. Peace is a hard red spring wheat (Triticum aestivum L.) adapted to the shorter-season wheat-growing regions of the Canadian prairies. Peace was evaluated in the Parkland Wheat Cooperative Test in 1999, 2000 and 2001. Peace exhibited grain yield similar to the check cultivars over 2 yr (1999–2000; Neepawa and Roblin) and over 3 yr (1999–2001; AC Barrie and AC Splendor) Peace matured a day earlier than AC Barrie but was 2 d later than AC Splendor over 3 yr of testing (1999–2001) and was a day later than Neepawa and Roblin over 2 yr of testing (1999–2000). Peace had test weight similar to the check cultivars. Peace was moderately resistant to leaf rust and loose smut and resistant to stem rust including the highly virulent Ug99 race of stem rust and common bunt. Peace was moderately susceptible to Fusarium head blight. Peace meets the end-use quality specifications of the Canada Western Red Spring wheat class.


Sign in / Sign up

Export Citation Format

Share Document