scholarly journals Haploid biotechnology as a tool for creating a selection material for sugar beets

2022 ◽  
Vol 25 (8) ◽  
pp. 812-821
Author(s):  
E. O. Kolesnikova ◽  
E. I. Donskikh ◽  
R. V. Berdnikov

Since the discovery of the phenomenon of haploidy, biotechnology has become an integral part in the successful creation of new varieties and hybrids of various plant species. In particular, these technologies are actively used in agriculture, which is concerned with increasing the volume and improving the quality of products. The integration of haploid production techniques together with other available biotechnological tools such as marker selection (MAS), induced mutagenesis and genetic engineering technologies can significantly accelerate crop breeding. This article shows the main stages in the development of biotechnology since 1921. Now they are successfully used to create doubled haploids to accelerate the selection process of various plants and, in particular, sugar beet, which is the most important sugar crop in regions with a temperate climate. There are several methods for obtaining forms with a single set of chromosomes. For sugar beets, the use of gynogenesis turned out to be expedient, since in this case the other methods turned out to be ineffective in the mass production of haploids. The article considers the stages of obtaining the H and DH lines of Beta vulgaris L., as well as the main stages of biotechnological production of homozygous breeding material of this culture. These stages include selecting parental forms – donor explants, sterilizing buds and introducing non-pollinated ovules in vitro, obtaining haploids, doubling their chromosome set, creating doubled haploids, determining ploidy at different stages, relocating the obtained plants to greenhouses and growing stecklings. A number of advantages that the technology of creating doubled haploids in vitro has in comparison with traditional methods of selection are described. It has been shown that the use of these approaches is relevant when obtaining new highly productive hybrids and varieties of agricultural plants; however, the methods for the production of homozygous forms in sugar beet still require additional research aimed at increasing the efficiency and reproducibility of each stage of the process.

Bioenergy ◽  
2021 ◽  
Author(s):  
M. V. Roik ◽  
N. S. Kovalchuk ◽  
O. A. Zinchenko ◽  
L. H. Fedoroshchak ◽  
V. I. Vlasiuk ◽  
...  

Purpose. Investigation of cytogenetic aspects of embryological processes in the culture of immature apomictic embryos, breeding genotypes of sugar beet with cytoplasmic sterility for differentiation and selection by gametophyte reduced parthenogenesis. Methods. Cytological, biotechnological, fluorescent cytophotometry, field, laboratory. Results. The cytogenetic features of genesis of immature apomictic embryos cells induced in vitro on the 12th, 20th and 22th days of development have been investigated on the basis of CMS apozygotic lines of Beta vulgaris and alloplasmic lines of wild species Beta maritime and Beta patula. Indicators of efficiency of haploid reduced parthenogenesis in vitro in alloplasmic lines significantly exceeded the best technologies in pollen-sterile lines of sugar beet from 3.79% to 6.25% and had a value of 62.2%, 24.8%, and 16.7%, respectively. Stabilization of genome ploidy to diploid was carried out in selected breeding numbers without colchicine, based on evaluation and selection of genome ploidy using software of ploidy analyzer (AP) Partec. Conclusions. The efficiency of haploid reduced parthenogenesis induction in vitro in apozygotic CMS breeding genotypes of sugar beet as affected by genetic potential of cytoplasm and taking into account the total percentage of haploids (50 units; 100 units) and myxoploids (50 units; 100 units) has been investigated. Homozygous lines were created by stabilizing the genome ploidy of haploid and myxoploid micro sprouts during III–IV passages without the use of colchicine. Technologies of rooting in the open ground for use in the breeding process of sugar beets have been improved.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 814 ◽  
Author(s):  
Renata Kuśmierek-Tomaszewska ◽  
Jacek Żarski ◽  
Stanisław Dudek

The primary purpose of this work was to assess the need for irrigation in sugar beet cultivated in the temperate climate of the Kujawsko-Pomorskie region of Poland based on meteorological data from the period 1981–2010. The work was also aimed at determining the tendency of changes in the frequency and intensity of droughts during the period of high water needs for sugar beets (spanning July–August) and confirming the hypothesis that agricultural drought may be identified based on the indicator of meteorological drought—Standardized Precipitation Index (SPI). The occurrence of meteorological droughts amounted to 26.7–40.0%, depending on location. No significant trend of increasing dryness was found; however, quite the opposite, an upward tendency was identified, which indicates an improvement of precipitation conditions over time. It was found that sugar beet production in a temperate climate is carried out in the conditions of precipitation deficits, which amount to an average of 32–49 mm and a maximum of 112–173 mm in July–August, but the deficits showed neither significant nor targeted changes with time. A strong, significant relationship between meteorological (SPI) and agricultural (Pdef) drought indicators allows for a determination of sugar beet irrigation needs solely based on information on normalized precipitation values (SPI).


Author(s):  
E.G. Savenko ◽  
◽  
V.A. Glazyrina ◽  
L.A. Shundrina ◽  
◽  
...  

In vitro gamete technologies are an important source for breeders allowing rapid creation of stable genetic diversity. In addition, biotechnologies are environmentally friendly, resource- and energy-saving. These factors are the basis for the biologization and greening of agriculture. Oryza sativa L. is responsive to the anther culture (AC) in vitro, hence it became possible to obtain doubled haploids (DH) in mass quantity during the year (E.P. Aleshin et al., 1988; R.G. Butenko et al., 1990; T.I. Ditchenko, 2007). This is due to the genetic determination of the processes of callus formation and regeneration. In massive quantities, doubled rice haploids were created. Based on the results of field tests, rice varieties ‘Sonata’, ‘Sonnet’, ‘Ivushka’, ‘Privolny-4’, and ‘Vodopad’ were selected from promising DH lines with a set of economically valuable traits in a short time. They successfully passed breeding tests and are introduced into rice-growing farms of the Krasnodar region.


2018 ◽  
pp. 13-17 ◽  
Author(s):  
E. A. Domblides ◽  
N. A. Shmykova ◽  
G. A. Khimich ◽  
I. B. Korotseva ◽  
A. S. Domblides

The culture of unpollinated ovules in vitro in summer squash was used to develop fully homozygous breeding lines with the aim of the speeding-up breeding program. As a result of assessment for economically valuable traits, the seven promising DH-lines obtained from summer squash accessions differed by fruit shapes and colours were selected out. All breeding lines produced showed high homogeneity that retained in following generations and also have an appropriate set of economically valuable traits. DH-lines belonging to female type have up to 96% female flowers and only 4% male flowers. It is very important for breeding when the male flowers appeared in two weeks just after the female flower began blooming. The development of morphologically abnormal female and male flowers, along with gynandromorphy flowers was noted on selected DH-lines. During vegetation period from 26 to 36 flowers appeared on the plant, where out of them 19-21 ones were normally developed female flowers, 3-5 ones were normally developed male flowers, and up to 10-11 ones showed an abnormal way of development. The percentage of abnormal flowers stayed invariable when growing in greenhouse condition with high humidity and temperature as well as in open field condition. As it was shown the development of deformed abnormal flowers inherited and manifested in the following generation after self-pollination. As a result of the study, the occurred anomalies in course of male and female flower development in summer squash (C. pepo L.,) DH-lines produced through a cultivation of unpollinated ovules in vitro were described in details for the first time.


2019 ◽  
Vol 23 (1) ◽  
pp. 86-94 ◽  
Author(s):  
T. I. Djatchouk ◽  
O. V. Khomyakova ◽  
V. N. Akinina ◽  
I. A. Kibkalo ◽  
A. V. Pominov

Gametic embryogenesis is one form of totipotency of plant cells, in which either male or female gametes are induced to form embryoids (sporophytes). Regeneration of haploid plants from embryoids and subsequent chromosome duplication result in doubled haploids and DH-lines. The production of haploids and doubled haploids (DHs) through gametic embryogenesis allows a single-stage development of complete homozygous lines from heterozygous plants. The development of effective haploid protocols to produce homozygous plants has a significant impact on plant breeding, shorting the time and costs required to establish new cultivars. There are several available methods to obtain haploids and DHs-lines, of which anther or isolated microspore culture in vitro are the most effective. Microspore embryogenesis is more commonly applied. This is in part because more male gametophytes are contained in a single anther compared to the single female gametophyte per embryo sac. Microspore embryogenesis is regarded as one of the most striking examples of plant cell totipotency. The switch of cultured microspores from gametophytic to sporophytic mode of development has been induced by stress treatments of various kinds applied to donor plants, inflorescences, buds, anthers or isolated microspores both in vivo and in  vitro. Physical or chemical pretreatments (cold and heat shock, sugar starvation, colchicine, n-butanol, gametocydes) act as a trigger for inducing the sporophytic pathway, preventing the gametophytic pathway development of microspore. The recent investigations have revealed that cold pretreatment during microspore reprogramming acts rather as an anti-stress factor alleviating the real stress caused by nutrient starvation of anthers or microspores isolated from donor plants. Under stress pretreatment a vacuolated and polarized microspore transformed into a depolarized and dedifferentiated cell, which is an obligatory condition for reprogramming their development. We summarize data concerning the role of various stresses in the induction of microspore embryogenesis and possible mechanisms of their action at cellular and molecular levels. Identification of new stresses allows creating efficient protocols of doubled haploid production for end-user application in the breeding of many important crops.


2016 ◽  
pp. 517-524 ◽  
Author(s):  
Martin Wegener ◽  
Natalie Balgheim ◽  
Maik Klie ◽  
Carsten Stibbe ◽  
Bernd Holtschulte

KWS SAAT SE and Bayer CropScience AG are jointly developing and commercializing an innovative system of weed control in sugar beet for the global market under the name of CONVISO SMART. The technology is based on the breeding of sugar beet cultivars that are tolerant to herbicides of the ALS-inhibitor-class with a broad-spectrum weed control. This will give farmers a new opportunity to make sugar beet cultivation easier, more flexible in its timing and more efficient. The use of CONVISO, as new herbicide in sugar beet, will make it possible to control major weeds with low dose rates of product and reduced number of applications in the future. The tolerance is based on a change in the enzyme acetholactate synthase, which is involved in the biosynthesis of essential amino acids. This variation can occur spontaneously during cell division. During the development, sugar beets with this spontaneously changed enzyme were specifically selected and used for further breeding of CONVISO SMART cultivars. As such, these varieties are not a product of genetic modification. Field studies with CONVISO SMART hybrids showed complete crop selectivity and a broad and reliable efficacy against a large range of major weeds. The bio-dossier for an EU-wide registration of CONVISO was submitted in April in 2015. The variety inscription process is in preparation in different countries. The system CONVISO SMART is scheduled to be available to farmers in 2018 at the earliest.


2014 ◽  
pp. 228-231 ◽  
Author(s):  
Maciej Wojtczak ◽  
Aneta Antczak-Chrobot ◽  
Edyta Chmal-Fudali ◽  
Agnieszka Papiewska

The aim of the study is to evaluate the kinetics of the synthesis of dextran and other bacterial metabolites as markers of microbiological contamination of sugar beet.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 216
Author(s):  
Hernan Baldassarre

The potential of laparoscopic ovum pick-up (LOPU) followed by in vitro embryo production (IVEP) as a tool for accelerated genetic programs in ruminants is reviewed in this article. In sheep and goats, the LOPU-IVEP platform offers the possibility of producing more offspring from elite females, as the procedure is minimally invasive and can be repeated more times and more frequently in the same animals compared with conventional surgical embryo recovery. On average, ~10 and ~14 viable oocytes are recovered by LOPU from sheep and goats, respectively, which results in 3–5 transferable embryos and >50% pregnancy rate after transfer. LOPU-IVEP has also been applied to prepubertal ruminants of 2–6 months of age, including bovine and buffalo calves. In dairy cattle, the technology has gained momentum in the past few years stemming from the development of genetic marker selection that has allowed predicting the production phenotype of dairy females from shortly after birth. In Holstein calves, we obtained an average of ~22 viable oocytes and ~20% transferable blastocyst rate, followed by >50% pregnancy rate after transfer, declaring the platform ready for commercial application. The present and future of this technology are discussed with a focus on improvements and research needed.


Author(s):  
Lorena Almagro ◽  
Ana Belén Sabater-Jara ◽  
Sarai Belchí-Navarro ◽  
María Ángeles Pedreño

Nematology ◽  
2004 ◽  
Vol 6 (3) ◽  
pp. 375-387 ◽  
Author(s):  
N. Aileen Ryan ◽  
Peter Jones

AbstractSeventy bacteria, isolated from the rhizosphere of the potato cyst nematode (PCN) host plant, potato, were cultured in the presence and absence of potato root leachate (PRL) and the resultant culture filtrates were analysed for their ability to affect the hatch in vitro of the two PCN species. Of the isolates tested, nine had a significant effect on PCN hatch. Six affected Globodera pallida hatch and three affected G. rostochiensis hatch. Five of the isolates significantly increased hatch only when cultured in the presence of PRL. Three of the isolates decreased PCN hatch significantly in PRL. Only one isolate increased hatch significantly in the absence of PRL. No isolate affected the hatch of both species. Six of the nine isolates that significantly affected PCN hatch had been pre-selected by culturing on PRL. Bacterial isolates from PCN non-hosts (14 from wheat, 17 from sugar beet) were also tested for hatching activity. The principal effect of the hatch-active isolates from the PCN non-host plants was to increase PCN hatch in the presence of PRL. In contrast to the host bacteria results, the isolates from non-host plants affected only G. rostochiensis hatch (three wheat isolates and four sugar beet isolates significantly increased G. rostochiensis hatch); no such isolate affected G. pallida hatch significantly in the presence of PRL. Ten isolates (32%) from non-host plants had the ability to increase significantly the hatch of PCN in the absence of PRL (eight of these affected G. rostochiensis hatch and four affected G. pallida hatch), compared to only one bacterial isolate (1%) from a host plant. The majority of the isolates from non-hosts produced PCN species-specific effects, as with the bacteria isolated from potatoes, although two wheat isolates increased the hatch of both species significantly in the absence of PRL. Of 20 hatch-active bacterial isolates (from all three plants) identified, 70% were Bacillus spp. Other genera identified were Arthrobacter , Acinetobacter and Staphylococcus .


Sign in / Sign up

Export Citation Format

Share Document