scholarly journals UPKEEP OF THE DRIFT FOR REUSE IN AN ABNORMAL ZONE OF HIGH MINING PRESSURE

Ugol ◽  
2021 ◽  
pp. 10-14
Author(s):  
B.B. Lugantsev ◽  
◽  
N.V. Belikova ◽  
V.V. Belikov ◽  
A.I. Chavkin ◽  
...  
Keyword(s):  
2021 ◽  
Vol 18 (1) ◽  
pp. 163-176
Author(s):  
Penghua Han ◽  
Cun Zhang ◽  
Zhaopeng Ren ◽  
Xiang He ◽  
Sheng Jia

Abstract The advance speed of a longwall face is an essential factor affecting the mining pressure and overburden movement, and an effective approach for choosing a reasonable advance speed to realise coal mine safety and efficient production is needed. To clarify the influence of advance speed on the overburden movement law of a fully mechanised longwall face, a time-space subsidence model of overburden movement is established by the continuous medium analysis method. The movement law of overburden in terms of the advance speed is obtained, and mining stress characteristics at different advance speeds are reasonably explained. The theoretical results of this model are further verified by a physical simulation experiment. The results support the following conclusions. (i) With increasing advance speed of the longwall face, the first (periodic) rupture interval of the main roof and the key stratum increase, while the subsidence of the roof, the fracture angle and the rotation angle of the roof decrease. (ii) With increasing advance speed, the roof displacement range decreases gradually, and the influence range of the advance speed on the roof subsidence is 75 m behind the longwall face. (iii) An increase in the advance speed of the longwall face from 4.89 to 15.23 m/d (daily advancing of the longwall face) results in a 3.28% increase in the impact load caused by the sliding instability of the fractured rock of the main roof and a 5.79% decrease in the additional load caused by the rotation of the main roof, ultimately resulting in a 9.63% increase in the average dynamic load coefficient of the support. The roof subsidence model based on advance speed is proposed to provide theoretical support for rational mining design and mining-pressure-control early warning for a fully mechanised longwall face.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Ma Xingen ◽  
He Manchao ◽  
Wang Yajun ◽  
Zhang Yong ◽  
Zhang Jiabin ◽  
...  

The retracement channel roof cutting (RCRC) technology can change the overburden structure actively by cutting off the roof of channel along the direction of working face tendency and make use of the gangue collapsing from roof cutting range to fill the goaf and weaken the mining pressure during the retracement process of working face. In order to solve the problems of high stress in surrounding rock and serious deformation of retracement channel in Halagou coal mine, it is the first time that the pressure releasing test is carried out on the 12201 working face by the method of the directional presplitting roof cutting in retracement channel. First, according to statics theory and energy theory, the stress state of hydraulic support and roof deformation mechanism of retracement channel are analyzed. Then the roof cutting design of retracement channel is determined according to the geological conditions of 12201 working face, and the cutting effect is analyzed by numerical simulation. Finally, the field test is carried out on the 12201 working face to verify the effect of pressure releasing by roof cutting. The result shows that, with the roof cutting design including the roof cutting height being 8m and roof cutting angle being 45°, the roof subsidence of the 12201 working face retracement channel in Halagou mine is reduced to 132.5mm, and the hydraulic support resistance is maintained at 1361KN. And there is no hydraulic support crushed; the deformation of the retracement channel is also small; namely, the effect of roof cutting for pressure releasing is obvious.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3316 ◽  
Author(s):  
Xingyu Zhang ◽  
Liang Chen ◽  
Yubing Gao ◽  
Jinzhu Hu ◽  
Jun Yang ◽  
...  

Gob-side entry retaining (GER) is a hot issue with regard to saving resources and reducing the drivage ratio in longwall mining. This paper investigates an innovative approach of roof presplitting for gob-side entry retaining (RPGER). RPGER uses the directional cumulative blasting to split the roof in advance. The rock roof within the presplitting range caves in gob after mining. The caved gangue can become the natural rib of the gob-side entry and expands to be the natural supporting body for resisting the upper roof movement. A numerical model of RPGER was established by the discrete element method (DEM), which showed that the supporting effect by the expanded gangue was well functioning. The gob-side entry was in pressure-relief surroundings and featured in the lesser deformation. The roof presplitting design method was presented and validated with a field test. The test illustrated that RPGER reduced the mining pressure on the retained entry side. The expanded gangue on the entry side was gradually compacted. It is the compaction process that played the role of reliving mining pressure, and the compacted gangue became the effective rib of the gob-side entry. The retained entry in the pressure-relief surroundings would stabilize a lagging distance behind the working face. The gob-side entry after stabilization met the entry retaining and the safety production requirements. This work illustrates the mechanism of RPGER and validates its feasibility and efficiency.


Subject Mining operations and environmental and social factors in South-east Asia. Significance Philippines environment minister Regina Lopez warned in October that her country may ban all new mines as part of an environmental audit that has already halted ten projects. Tensions between miners and local communities, coupled with government demands for a greater share of revenues, have led to other shutdowns in Indonesia, Laos, Malaysia, Thailand and Vietnam. Impacts Investors will likely take their money outside the region unless mining bans are relaxed. Weak global demand will hinder efforts to build onshore refining capacity as an export substitution. Pressure will mount on mining operations to adhere to green practices and corporate social responsibility.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yalong Li ◽  
Mohanad Ahmed Almalki ◽  
Cheng Li

Abstract For the comprehensive mechanised coal mining technology, the support design of the main withdrawal passage in the working face is an important link to achieve high yield and efficiency. Due to the impact of mining, the roof movement of the withdrawal passage is obvious, the displacement of the coal body will increase significantly, and it is easy to cause roof caving and serious lamination problems, and even lead to collapse accidents, which will affect the normal production of the mine. In this paper, the mining pressure development law of the main withdrawal passage support under the influence of dynamic pressure is designed, the most favourable roof failure form of the withdrawal passage is determined, and the action mechanism and applicable conditions of different mining pressure control measures are studied. The pressure appearance and stress distribution in the final mining stage of fully mechanised coal face are studied by numerical simulation. The deformation and failure characteristics and control measures of roof overburden in the last mining stage of fully mechanised coal face are analysed theoretically. Due to the fact that periodic pressure should be avoided as far as possible after the full-mechanised mining face is connected with the retracement passage, some auxiliary measures such as mining height control and forced roof blasting are put forward on this basis. The relative parameters of the main supporting forms are calculated. The main retracement of a fully mechanised working face in a coal mine channel is put forward to spread the surrounding rock grouting reinforcement, reinforcing roof, and help support and improve the bolt anchoring force, the main design retracement retracement channels in the channel near the return air along the trough for supporting reinforcing surrounding rock control optimisation measures, such as through the numerical simulation analysis, the optimisation measures for coal mine fully mechanised working face of surrounding rock is feasible. Numerical simulation results also show that the surrounding rock control of fully mechanised working face of coal mine design improvements, its main retreat channel under the roof subsidence, cribbing shrank significantly lower, and closer, to better control the deformation of surrounding rock, achieved significant effect, to ensure the safety of coal mine main retracement channel of fully mechanised working face support.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1405
Author(s):  
Kaige Zheng ◽  
Yu Liu ◽  
Tong Zhang ◽  
Jingzhong Zhu

Fully mechanized top-coal caving mining with high mining height, hard roofs and strong mining pressure are popular in the Shendong mining area, China. The occurrence of dynamic disasters, such as rock burst, coal and gas outburst, mine earthquakes and goaf hurricanes during the coal exploitation process under hard roof conditions, pose a threat to the safe production of mines. In this study, the characteristics of overburden fracture in fully mechanized top-coal caving with a hard roof and high mining height are studied, and the technology of advanced weakening by hard roof staged fracturing was proposed. The results show that the hard roof strata collapse in the form of large “cantilever beams”, and it is easy to release huge impact kinetic energy, forming impact disasters. After the implementation of advanced hydraulic fracturing, the periodic weighting length decreases by 32.16%, and the length of overhang is reasonably and effectively controlled. Ellipsoidal fracture networks in the mining direction of the vertical working face, horizontal fracture networks perpendicular to the direction of the working face, and near-linear fracture planes dominated by vertical fractures were observed, with the accumulated energy greatly reduced. The effectiveness of innovation technology is validated, and stress transfer, dissipation and dynamic roof disasters were effectively controlled.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Qingwei Bu ◽  
Min Tu ◽  
Baojie Fu

Due to the change of ground stress environment caused by underground coal mining, the intense lateral mining stress concentration is formed around the stope; so section coal pillar is generally set up to bear the mining pressure, but the different sizes of coal pillars have obvious influence on the bearing capacity of those pillars and the characteristics of mining pressure. Mastering the mechanism characteristics by which coal pillars bearing capacity and mining stress distribution is crucial to identify the reasonable coal pillar size and give full play to the bearing role of section coal pillar, given their importance for the safety and bearing stability of engineering rock mass in underground coal mining. Therefore, the bearing characteristics of section coal pillar and the redistribution of mining stress are achieved with a mechanical model analysis on the basis of the analysis of coal pillar bearing and mining influence characteristics. Moreover, applying the elastic-plastic mechanics theory revealed the mechanical equations of the effective bearing size of coal pillar and redistribution of mining stress in longwall face. Combined with the analysis of a specific engineering example, the research results are as follows. During a roadway excavation, the continuous mining stress transfer occurs “stress redistribution” and the mechanical failure of bearing coal pillar consists of lateral mining and roadway side failures. The bearing coal pillar has two critical dimensions (i.e., the critical dimension W e of the self-bearing stability coal pillar and the critical dimension W p of failure through the coal pillar). The mechanical state of the lateral mining stress redistribution and bearing coal pillar is divided into the three situations: ① when the width of coal pillar W  <  W p , only one stress concentration area exists, the bearing capacity of the coal pillar is invalid at this stage, and the lateral mining stress concentration transfers to the roadway solid coal side; ② when the width of the coal pillar W e  ≥  W  ≥  W p , two stress concentration areas appear at this stage, and the coal pillar is in the critical state of self-bearing stability; ③ when the width of the coal pillar W  >  W e , three stress concentration areas are present, and the coal pillar at this stage is in a self-bearing stable state. Among all these factors, only the size of coal pillar is completely controllable, so the aspects of safe bearing and reserved size design of coal pillar, after estimating the critical size of coal pillar, the coal pillar size design is carried out according to the mine pressure control needs of mining engineering, and the cohesion, internal friction angle, interlayer friction coefficient, and coal seam mining height are improved by artificial technology, so as to realize the resource safe and efficient mining of all kinds of coal seam mining conditions; in the calculation of wide coal pillar size, the advance mining stress concentration at the end of the self-working face should be taken as the mining load condition, and the reserved size meets the condition of W  >  W e , thereby ensuring the stable bearing of the wide coal pillar despite the advanced mining stress concentration during the self-working face mining; in the calculation of narrow coal pillar size, the lateral mining stress concentration before mining should be taken as the mining load condition and the reserved size meets the condition W  <  W p , thereby realizing the effective transfer of mining stress concentration to the roadway solid coal side.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Chunxu Ji ◽  
Yongkang Yang ◽  
Xingyun Guo ◽  
Tianhe Kang ◽  
Zefeng Guo

Interbedded strata and their collapse are vital to mining pressure control for extremely thick coal seam under goaf. To ensure the stability of the support and to avoid roof collapse, some traditional underground pressure theoretical models had been widely used in the control of surrounding rock and the selection of support. However, one of the challenges for extremely thick coal seam under goaf is that the abnormal disasters, such as support crushing and water inrush that were occurring frequently. To solve this problem, the movement characteristics of overburden rocks during the mining of extremely thick coal seam under the conditions of the interlayer thickness of 5 m and 40 m were studied by using the similar simulation experiments, while the numerical simulation experiments were carried out for the interval between coal seams of 15 m and 60 m, respectively. Finally, the structure and mechanical transfer mechanism of overburden in stope under different thickness interbedded strata were analyzed dynamically, and the condition of full-thickness connection between upper goaf and lower goaf and corresponding judgment criteria are obtained. These results can guide future research on the mechanical of extremely thick coal seam under goaf, which can provide a theoretical basis and engineering reference for similar projects.


Sign in / Sign up

Export Citation Format

Share Document